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Abo tract

The need for generating reliable estimates
\

of mutation rate in man lias been emphasized by a 
number of geneticists. The present study estimates 
the rate of mutation at cistron level using data on 
electromorphs in a number of human populations.

The number and frequency of private electro
morphs, both rare and polymorphic, have been 
enumerated in relatively isolated populations 
from Australia, Papua New Guinea, India and. sub- 
Saharan Africa. It. is noticed that the recovery 
of these electrophoretic variants is directly 
related to the number of genes sampled, the size 
of the polypeptide subunit electrophoresed and 
the molecular constraints arising from the 
assembly of multimeric proteins.

Mutation rates in 38 individual populations 
have been generated in the present study by five 
different methods. The average estimates of 
mutation rate obtained by the methods of Kimura 
and Ohta (1969) and Rothman and Adams (1978) are 
5.99x10  ̂ and 6.39x10 ^/locus per generation 
respectively. The estimates by the rare allele 
methods of Nei (1977) and Chakraborty (1981) 
and by a new method, suggested in the present 
study, utilizing singletons, are comparatively 
smaller, being 4.62x10 2.55x10  ̂ and 2.86x10



locus per generation respectively.
The estimates of mutation rate generated here 

show regional/ethnic differences. The significance 
of these differences, however, cannot be properly 
evaluated since large standard errors are known to 
be associated with the estimates of the number of 
alleles segregating and the population size, two 
of the parameters indispensible to the indirect 
approaches.

The suggestion of Nei et al. (1976b) regarding 
the variability in mutation rates of various 
protein loci has been tested using the data on 
rare alleles in 12 different human populations.
The results indicate the existence of

significant correlation between subunit 
molecular weights and the number and frequency 
of rare alleles.

The present results have indicated the 
existence of variability in the estimates of 
mutation rate more or less at the same level 
as that generated from indirect estimates of 
"classical" traits. The need for deciding the 
order of magnitude of mutation rate in man is
alive as ever.



TABLE OF CONTENTS

Chapter 1. HISTORICAL PERSPECTIVE 1
1.1. The Nature of Mutation 4
1.2 The Estimation Procedures 7

1.2.1 . Indirect methods 8
1.2.2 Direct methods 12
1.2.3 Semi-direct methods 13
1.2.4 Relative methods 17
1.2.5 Poissonian approximation met h 0 d s 22

1.3. Estimates of Mutation Rate 23
1.3.1 Indirect estimates 2 3
1.3.2 Direct estimates 2 5
1.3.3. Semi-direct estimates 27
1.3.4 Relative estimates 28
1.3.5 Poissonian approximation estimates 28

Chapter 2. THEORETICAL FORMULATION 29
2.1. Neutrality Models 30

2.1.1 Infinite alleles model 50
2.1.2 Infinite sites model 31
2.1.3 Step-wise mutation model 32

2.2. Generalised Neutrality 32
2.3. Neutrality Theory and Estimation of 

Mutation Rate 33
2.4. Mathematical Formulation 34

2.4.1 Diffusion approximation methods 35
2.4.1.1. The sampling theory 37
2.4.1.1.1. Total number of alleles (k ) 4̂
2.4.1.1.2. Number of rare alleles (k ) 41
2.4.1.1.3. Number of singletons (k ) 44



Page
2.4.2. Branching Process Models 47
2.4 . 2.1. Rothman and Adams’ method 4 8
2.4 . 2 . 2 . Neel and Ihempson's method 5 4
2.4.3. Equil ibrium methods c

Chapter 3. THE FREQUENCY OF PRIVATE ELECTROPHORETIC 
VARIANTS AND INDIRECT ESTIMATES OF 
MUTATION RATE 59

3.1. Introduction 59
3.2. Estimates of Mutation Rate 60

3.2.1. Mutation rate in Australian Aborigines 60
3.2.1.1. The study population 60
3.2.1.2. The laboratory data 64
3.2.1.3. Estimation of k , k and K 67
3.2.1.4. The estimation of actual (apparent)

population size, N. 69
3.2.1.5. The estimation of t 71o
3.2.1.6. Results 72
3.2.2. Mutation rates in Papua New Guinean

populations 75
3.2.2.1. The study population 75
3.2.2.2. The laboratory data 78
3.2.2.3. Estimation of k , k and K 85
3.2.2.4. Estimation of actual (apparent) and

variable effective population sizes 87
3.2.2.5. Estimation of t 93o
3.2.2.6. Results 94
3.2.2.7. Discussion 96
3.2.3. Mutation rates in Scheduled Tribes from

South India 99
3.2.3.1. The study population 100
3.2.3.2. The laboratory data 101
3.2.3.3. Estimation of k , k and K 107
5.2.3.4. Estimation of actual population size

(N) and variance effective population 
size (N v) 109



Page
3.2.3.5. Estimation of t 112o3.2.3.6. Results 112
3.2.3.7. Discussion 118
3.2.4 Estimates of mutation rate in bunter- 

gatherers of Central and Southern 
Africa 123

3.2 . 4 . 1. 
3.2.4.2.

The study population
Estimation of actual (N) and variance 

effective population size (N v)

12 3 

126
3.2.4 . 2.1. San 126
3.2.4.2.2. Khoisan 131
3.2.4.2,3. Dam a 133
3.2.4 . 2.4 . Black Basarwa 154
3.2.4.2.5 . Sandawe 134
3.2.4.2.6. Kgalgadi 135
3.2.4.2,7. Pygmies 135
3.2.4.3. The estimation of t . b and c0 138
3.2.4.4. The laboratory data 139
3.2.4.5 . Estimation of k , k and Kr 148
3.2.4.6. Estimates of mutation rate 149
3.2.4.7. Discussion 150
3.2.5. Some additional estimates 154
3.2 . 5 . 1. Introduction 155
3.2.5,2. Results 156
3.2 . 5 . 3 . Discussion 159

Chapter 4. FACTORS AFFECTING ESTIMATION OF ELECTRO-
MORPH MUTATION RATES 163

4.1. Introduction 165
4.2. Factors Affecting Estimation of Electro-

mo rph Mutation Rates in Australian 
Aborigines 164

4.2.1. The data 167
4.2.2. Results 169



Page
4. 2.2.1. Relationship between the number of 

rare alleles and sample size,
\

total number of alleles, hetero
zygosity'. subunit number and 
subunit size 171

4.2.2.2. Effect on mutation rates 174
4.2.3. Discussion 179

4.3. Hypergeometric Sampling and Estimation of
Mutat.ion Rate 18 3

4.3.1. Formulations 185
4.3.2. Results and Discussion 190

Chapter 5. RELATIVE ELECTROMORPH MUTATION RATES 199
5.1. Introduction 199
5.2. The Laboratory Data 201
5.3. Results 204

5.3.1. Inter locus variability 204
5.3.1.1. Number of rare alleles fK ) 20 4r '
5.3.1.2. Rare allele heterozygosity (H.r) 208
5.3.1.3. Relative electromorph mutation rates

(REMR) 210
5.3.2. Interpopulational variability 212
5.3.2.1. Number of rare alleles (K^) 212
5.3.2.2. Rare allele heterozygosity (H ) 214
5.3.2.3. Relative electromorph mutation rates

(REMRs) 216
5.4. Discussion 216

Chapter 6. CONCLUSIONS 224

Bibliography. 4̂ 5
Publications



LIST OF TABLES

Table

3.1

3. 2

3. 3

3.4

3. 5

3.6 

3. 7

3.8

3.9 

3. 10

3.11

Page

Genetic markers in Australian 
Aborigines (based on Blake, 1979) 65

The number and frequencies of
private variants in Australian 66
Aborigines

Number of loci with and without 
private variants and values of 
k in the total Aboriginal popula
tion 68

Mutation rates (xlO^) in Australian 
Aborigines obtained by various 
methods

Speech communities sampled in Papua 
New Guinea

Genetic markers in Papua New Guinea

No. and frequencies of private 
variants in Papua New Guinea

Mean sample sizes, subunit molecular 
weights and heterozygosities for 
protein loci with and without private 
variants 86

Mutation rates in Papua New Guinea 95

Actual population size (N) in
Scheduled Tribes of South India 103

List of red cell enzymes, proteins and 
serum proteins included in the study 
of Scheduled Tribes of South India. 105

73

79

82

84

3.12 Rare variants and private polymorph
isms in Scheduled Tribes of South India 106



Tab 1 e 

3. 13

3.14

3.15

3.16

3.17

3. 18 

3.19 

3.2 0

3.21

3.22

Summary of various genetic 
parameters and sample size in 18 
Scheduled Tribes from South India

Summary of various genetic 
parameters and number of single 
locus determinations for various 
groups of Scheduled Tribes of 
South India

Estimates of mutation rate in 
Scheduled Tribes of South India

Estimates of mutation rates in 
various groups of Scheduled 
Tribes of South India

Linguistic groupings, approximate 
population size and location of 
various San populations included 
in the study (After Lee, 1979)

Mean and variance of progeny
size among !Kung men and women
and estimations of N v/Ne
Summary of various statistics used 
for estimating mutation rate in 
African populations

Number of copies and frequency of 
private and rare variants in 
Khoisan populations

Number of copies and frequency of 
private and rare variants in non - 
Khoisan populations

Number of copies and frequency of 
private and rare variants in 
Pygmies from central Africa

Page

108

113

114

115

128

132

140

141 

145 

147



Table Page

5. 23

3. 24

3.25

3.26

4. 1

4.2

4.3

4.4

4.5

4.6

Estimates of mutation rate (xlO ) 
in various African populations

Summary statistics of the data 
used for estimating the mutation 
rate for various populations

Additional results of y obtained 
by using Chakraborty and singletons 
method

Estimates of mutation rate (xlO^) 
for different values of q by the 
methods of Nei (1977) and Chakraborty 
(1981)

List of proteins and enzymes 
included in the study and their 
respective sample sizes, subunit 
sizes, number of total and rare 
alleles and expected heterozygosity

Mean and SDs of sample size, subunit 
size and heterozygosity at loci with 
or without rare alleles

Sample size and electromorph 
mutation rates

Amount of heterozygosity and electro
morph mutation rates in the Australian 
Aborigines. Note the fluctuations in 
mean sample sizes

Subunit size and electromorph 
mutation rates. Note the fluctua
tions in mean sample sizes for 
various categories

Electromorph mutation rates (xlO^) in 
Australian Aborigines weighted for 
sample size, subunit size and propor
tion of cistron involved in surface 
interactions

149

157

158

161

168

170

176

177

178

180



Table Page

4. 7

4. 8

4.9

5. 1

5.2

5.3

5.4

5.5

Unadjusted electromorph mutation 
rates per base pair in Australian 
Aborigines

Summary of the number of variants 
detected per polypeptide in 12 
Amerindian tribes (based on data 
in Neel and Rothman, 1978 and 
Neel, 1978)

5Estimates of mutation rate y(xlO ) 
for twelve Amerindian tribes 
obtained by using different esti
mation procedures

Interlocus variability in the 
frequency of rare alleles and 
estimates of relative electromorph 
mutation rates (REMR)

Subunit size, quaternary structure 
and rare allele variation in 12 
human populations

Correlation coefficients (r) between 
molecular weight, sample size and 
parameters of rare alleles and the 
proportion of variance explained 2by molecular weight variation (r )

Parameters of rare allele variation 
and relative electromorph mutation 
rates in 12 human populations

A comparison of rare allele hetero
zygosity (H ) and number of rare 
alleles (K ) between monomers and 
multimers for 12 human populations 
and total samples

182

191

193

203

205

207

213

215



Table
6.1

6. 2

6.3

6.4

6.5

Distribution of the mutation 
rate in 38 human populations
Estimates of mutation rates 
(xlO^) in various populations
Comparative estimates of 9̂  in 
various populations
Estimates of total mutation 
rate by various estimation 
procedures
Estimates of 0~ for various r
populations obtained from the 
protein loci included in the 
study

Page

225

228

231

233

235



LIST OF FIGURES Page

Figure 3.1

3.2

3.3

5.1

5 ..2

Map of Australia showing area sampled 
(diagonal hatching) and tribal 
territory of the Waljbiri (cross hatched)
Map of Papua New Guinea showing 
boundaries of administrative areas and 
island populations included in the 
present investigation
Map of southern India showing geo
graphical locations of various 
Scheduled Tribes included in the 
present investigation
Relationship between the number of 
different rare alleles per 1,000 
determinations at a locus and the 
respective subunit molecular weights 
in human populations
Relationship between the rare allele 
heterozygosity (copies of rare alleles 
per 1,000 determinations) at a locus 
and the respective subunit molecular 
weights in human populations

62

81

102

207

209



Chapter 1

HISTORICAL PERSPECTIVE

The average rate at which human genes mutate 
is a parameter not only of considerable importance 
in evolutionary genetics, but also has certain 
immediate practical implications because of the 
contribution mutation makes to human ill-health 
(Neel, 1978a; Knudson, 1979). However, despite the 
very considerable effort devoted to the subject and 
the imposing body of knowledge which has accummula- 
ted during the past eight decades, our understanding 
of the spontaneous and induced mutation rates in 
higher organisms has not been proportional to the 
recent advances in other fields of genetical 
research (Neel, 1977).

One of the major reasons for this lack of 
knowledge is that the subject of mutation rates in 
eukaryotes has been discussed generally on the 
basis of visible Mendelian traits. The estimates 
generated from these traits suffer from
two obvious sources of bias: (a) the relationship
of the observed changes to the alterations in the 
genetic code is unknown, and (b) the loci 
selected are generally those at which mutations 
are already known to have occurred and their 
inclusion in the sample of loci studied is a 
function of their mutation rate (Cavalli-Sforza and



Bodmer, 19 71; Yasuda, 19 7 3).
The recent developments in the fields of 

protein separation and the demonstrated co-linearity 
of a ger-3 and its polypeptide product have now made 
it possible to relate the changes at the polypeptide 
or aminoacid level to the coding nucleotides. In 
addition, the advances in the fields of histochemi- 
cal staining and two dimensional electrophoresis 
have reduced considerably the reliance on traits 
with demonstrated mutability. Besides, the processes 
of mutagenesis and DNA repair are better understood 
and this may be used to explain much of the varia
bility in the mutation rates encountered over 
various loci.

Meanwhile, the mathematical theory of popula
tion genetics has become much more sophisticated. 
Particularly noteworthy is the theoretical frame
work provided by the manipulation of differential 
equations (Kimura, 1964) and the branching process 
models (Rothman and Adams, 1978; Thompson and 
Neel, 1978). While the diffusion models allow one 
to describe the behaviour of mutant alleles by 
considering the random changes resulting from 
random sampling of gametes during reproduction, 
as well as the deterministic changes caused by 
mutation and selection (Kimura, 1979a) the branch
ing process models given by Neel and Thompson (1978) 
and Rothman and Adams (1978) relate the probability 
distributions of current observations to generate
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a likelihood function which permits a direct 
classical approach to the estimation of mutation 
rates. In addition* models to explain genetic 
variations at electromorph (Ohta and Kimura, 1973) 
allelic (Kimura and Crow, 1964) and nucleotide 
(Kimura, 1969) level are useful in relating the 
mutation rates to the corresponding observations.
The sampling theory of neutral alleles (Ewens, 1972) 
and algorithms to relate the sample estimates to the 
population values (Nei, 1977; Rothman and Adams, 
1978; Chakraborty, 1981) have also proved useful 
in the newer approaches to mutation rate estimation.

Although it would be ideal to generate 
mutation rates using direct observations of fresh 
mutations in a population, the magnitude of the 
associated errors and the prohibitive cost of 
monitoring (Neelet al, ,1980a) make such a program 
a difficult, although not impossible proposition. 
Evidence from other sources, however, lends itself 
to statistical manipulation to generate indirectly 
estimates of mutation rates which may be reliable.

In the present study I use such indirect 
methods to generate estimates of average mutation 
rate from electrophoretic data in various human 
populations. In addition, I relate the mutation 
rates for individual polypeptide chains to the 
physico-chemical and configurational constraints 
of the molecule. Previous estimates of mutation
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rates then will be discussed in the light of new 
evidence.

1.1. The Na ture o £ Mutat ion.
According to prevailing concepts mutation 

results from molecular "slips” during DNA replica
tion and repair and also during meiotic processes. 
Meiosis is implicated because higher mutation rates 
occur during meiosis than mitosis (Magni and von 
Borstel, 1962). Numerous human diseases exhibit 
alterations in the mechanisms by which the damaged 
DNA is repaired and mutations reproduced. Investi
gations of these diseases, notably xeroderma 
pigmentosum (XP), ataxia telangiectasia (AT) and 
Fanconi's anaemia (FP) have shown that human repair 
systems are complex inter-related systems with 
distinct features (Cleaver, 1978). The paternal 
age effects and the sex differences in sex-linked 
mutations seen in achondroplasia and Lesch-Nyhan 
disease respectively support the role of replication 
in mutation process (Vogel and Motulsky, 1979), 
although the adequacy of the basic models of DNA 
replication and base mispairing is being increasing
ly doubted (Drake, 1978).

The present explanations of the mutagenic 
processes, however, have evolved from a number of 
chemical and physical hypotheses put forward in 
the last sixty years. Bateson (1928) conceived 
of mutation as a presence - absence situation
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according to which ail mutations are due to the 
loss of the normal gene. The theory explained 
most of the phenomena prevailing at that time 
(Auerbach, 1971) and is applicable, even now, in 
part to null mutations of proteins, but certainly 
does not explain most of the mutational changes 
being unfolded recently.

Muller (1922) conceived of a mutation as some 
kind of 'autocatalytic’ change, i.e. the basic 
function of the gene is retained although its form 
is altered, a description which was eventually 
supported by Watson and Crick’s (1953) model of 
mutation through DNA replication and base mis- 
pairing processes.

The generally accepted view of mutagenesis 
that the variability caused by induced mutations 
is in no way different from that produced by 
spontaneous mutations, has led to a number of 
explanations attributable to different mutagenic, 
involvements of irradiation and exposure to 
chemicals. To begin with, there was not much 
similarity in the approach of those investigators 
studying the mutagenic effects of radiation and 
those working on chemically induced mutations and 
the field was dominated by biophysical questions, 
particularly the question of validity of the target 
theory and the role of the indirect effect of radia
tion (Lea, 1946). The situation with chemical
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mutagens was clarified by the analysis of the 
nature of mutations induced by simple chemicals in 
both plants (Gierer and Mundry, 1958) and 
bacterial viruses (Freese, 1959). The eras of 
radiation genetics and chemical mutagenesis, have 
however, only touched a part of the mutational 
spectrum. It may be relevant to point out here 
that the high exposure ro mutagenic chemicals is 
only a recent phenomenon in human populations and 
that the naturally occuring ionizing radiation is 
far too weak to account for the rates at which 
spontaneous mutation rates have prevailed in the 
past. In fact, the role of metabolic processes in 
the induction and maintenance of an optimal level 
of spontaneous mutations cannot be ignored 
(Auerbach, 1978) .

This question of the insufficiency of physico
chemical explanation of the mutational events has 
seen another dimension in the recently proposed 
mutational theories of carcinogenesis (Knudson, 
1971). The carcinogenic evidence of
mutation, in turn, should help unravel the nature 
of mutations in the near future.

The elucidation of the genetic code (for a 
review, see Jukes 1978) together with advances in 
working out the primary structure of protein 
molecules has meant, that the precise change of 
the aminoacid sequence in a mutant protein can
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often be identified (Brock, 1978). The bulk of 
information comes from the study of mutant haemo
globins (Masters and Holmes, 1975). This genetically 
determined variation in the protein structure, 
however, takes a variety of forms whose end effects 
vary from lethal to benign. Most ef these may be 
attributable to structural gene mutations (Harris, 
1981). The variable expression of human genes in 
the synthesis of proteins may, however, be partly 
attributed to regulatory gene mutations (Kazazian 
et al, 1977). This loss of activity in proteins
resulting from mutations leads generally to ill 
effects, although the evidence is accummulating 
that the loss of protein activity may not be only 
restricted to harmful states (Neel, 1978a).

Many studies of protein variation have 
employed methods of protein separation, usually 
by electrophoresis or have depended on the presence 
of a gross difference in enzyme activity (Nyhan, 
1977). Some have explored differences in the 
kinetic properties of enzymes. More recently, 
investigators have begun to apply immunochemical 
methods to decipher the type of mutation 
(Ben-Yoseph et a l 1978).

1.2. The Estimation Procedures.
The first procedure to estimate mutation rate 

indirectly, even before direct estimations were
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made, was given by Danforth (1921). Since then a 
number of indirect procedures to estimate mutation 
rate using mutation - selection equilibrium 
(Haldane, 1955), average life span of a mutant 
prior to extinction (Ewens, 1964; Kimura and Ohta, 
1969), lethal and detrimental equivalents (Morton, 
1960), sex-ratio changes (Traut, 1969) and number 
of different alleles (Nei, 1977; Rothman and 
Adams, 1978; Chakraborty, 1981) have been
proposed. In addition, a number of direct, semi- 
direct (Morton, 1959) and relative (Neel, 1977; 
Zouros, 1979) methods to estimate mutation rate 
have been suggested.

1.2.1. Indirect methods.
Danforth (1921) suggested that the average 

number of generations a mutant survives in a 
population (t ) is a function of its selective 
value. The mutation rate for slightly unfavour
able deleterious mutations p, can be estimated as: 

y = x/tQ .. (1 .1)
where x is the frequency of the trait in the 
population. This argument, however, overlooked 
the fact that irrespective of the selective disad
vantages, most of the new mutations are eventually 
lost to the population (Fisher, 1930). Besides, 
the rarity of information on t has made the use 
of this approach limited.



Using the diffusion approximations, Ewers (1964) 
has given the average time until extinction under the 
infinite alleles model as

t = 2 / x ^ ( l - x ) Ö ^dx (1.2)
0 0

where G=4Ny is the scaled rate of mutation. Another 
simple expression for t is given by Kimura and Ohta 
(1969) as

N
tn = 2 (— v-) log 2N (1.3)

N
where N and N are respectively the variance effective 
and actual size of the population. Although both the 
models use diffusion approximations to arrive at the 
expressions for estimating t , the former model in
corporates the rate of mutation whereas the latter model 
is essentially a two allele model giving a conditional 
mean extinction time. Li and Neel (1974) and Li 
(1978), however, find the formula (1.3) unrealistic 
for the population structures actually obtained and 
have shown through simulation studies that the Kimura- 
Ohta equation leads to overestimation. Note, 
however, that the argument has come a long way from 
Danforth’s formula.

Haldane (1935) used the mutation-select ion 
equilibrium to estimate mutation rate, a method 
which involved a balance sheet of loss and renewal.
The rate of renewal, sufficient to balance the loss, 
was called mutation rate. Haldane's equilibrium
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equation i s gi ven as

2N |i = KN (1 - f)x (1.4)

Where N is the population size, x is the frequency 
of the trait in question, f its genetic fitness or 
fecundity and K is a constant depending upon the 
loss of the number of genes through the death of an 
affected individual. The value of K is one for 
autosomal dominants, two for autosomal recessives 
and 2/3 for sex-linked recessive traits. Neel 
(1962) modified the formulation for autosomal 
recessive characters to include the role of 
consanguinity in exposing hidden traits, as:

y = (1-f) [ax+ (l-a)x“] (1.5)
where y is the expected amount of the inbreeding 
coefficient and K=l. Nei and Imaizumi (1963) 
modified the equation to estimate mutation rate 
for rare recessive traits.

The errors involved in estimating mutation 
rates using classical Mendelian traits have been 
listed extensively. For direct observations these 
include paternity errors, phenocopi.es and polygenic 
inheritance, For indirect procedures, in addition 
to the errors listed for the direct methods, the 
validity of the assumption of genetic equilibrium 
is the most questionable. In addition, the 
reliability of the estimates of fertility differ
entials and for the recessive traits, the role of
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inbreeding make the utility of these estimates 
rather doubtful. An excellent review of these 
probable errors is given by Neel (1962) .

With the advent of molecular genetics, a point 
mutation was recognized as an alteration in the DNA 
by the substitution of a purine or pyrimidine base. 
This can result in a large number of mutations for 
each polypeptide and this, in turn, led to a number 
of attributes of genetic variation, in addition to 
the frequency of the allelic trait in question, to 
be used for estimating the mutation rate.

Some of these parameters used for estimating 
the rate of mutation are: the expected number of
different alleles, i.e. total, rare or single copy 
alleles given under the infinite alleles model 
(Karlin and McGregor, 1967; Ewens, 1972; Nei,
1977, Chakraborty, 1981 and Rothman and Adams,
1978), the expected number of electromorphs given 
under the stepwise mutation model (Kimura ard Ohta 
1975), the total number of nucleotide sites 
segregating under the infinite sites model (Kimura 
and Ohta, 1.969), heterozygosity under all the three 
models of mutation namely infinite alleles (Kimura 
and Crow, 1964), stepwise (Kimura and Ohta, 1975) 
and infinite sites model (Kimura, 1969) and the 
probability of monomorphism, under the infinite 
alleles model (Kimura and Ohta, 1971). For strict 
neutral cases the estimation of 9(=4Ny) from hetero
zygosity is known to yield a biased estimate of y
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under the infinite alleles model (Ewens and Gillespie, 

19 74) , Ev/cns (1972), on the other hand, has demonstrated 

the number of different alleles to be a sufficient 

statistic for 9 under the infinite alleles model.

A number of different sampling procedures to estimate 

the mutation rate from the number of different alleles 

recovered in a sample are given by Ewens (197 2) ,

Ewens (1974) , Watterson (1974), Nei (1977), Rothman 

and Adams (1978) and Chakraborty (1981). The 

equations used in the various estimation procedures 

and their relative efficiencies are discussed in a 

later section.

The concept of recurrent mutation is, however,
A

presented in a different form when the estimates K
A

and F are based on electromorphs. This is because 

of the redundancy in the genetic code and of cases 

where there is no charge change due to the substitu

tion of an amino acid with one of equal charge.

Besides, a large number of charge changes may 

coalesce to form an electromorpb (Nei and Chakrab^rt y, 

1976; Chakraborty and Nei, 1976). The situation 

may, however, be resolved to a certain extent by 

the used of a number of other electrophoretic 

conditions.

1.2.2. Direct methods.

The direct method for dominant, traits was 

first used by Gunther and Penrose (1935) and 

consists of simply counting all sporadic cases
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(those with normal parents and negative family 
histories) of the trait. A factor of 0.5 is used 
to make adjustment for the fact, that each individual 
possesses two genes at each locus. Harris et al. 
(1974) and Neel et al. (1980a) have used negative
results in population surveys to give the maximum 
limit of the mutation rate by using the formula

p =■• (l-y)Zn (1.6)

where p is the probability of detectingno fresh 
mutation in a sample of 2n genes.

1.2.3. Semi-direct methods.
Semi-direct estimates of mutation rate are 

obtained if the proportion of fresh mutations in 
the population is estimated, rather than identified 
(as is the case with direct methods). Using the 
data on sporadic cases (not familial or chance 
isolated cases) the rate of mutation (p) is 
calculated as

A

p = GI/locus per generation _ (1.7)
where G is the estimated proportion of sporadic 
cases among all affected and I is the incidence 
of trait in the general population.

Dewey, Barrai, Morton and Mi (1965) have 
suggested two alternative procedures for the 
estimation of G". For non-recessive sporadic 
cases they suggest the use of segregation analysis 
given by Morton (1959) to obtain the maximum
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likelihood estimates of 0". For recessive 
characters the consanguinity analysis of Chung, 
Robison and Morton (1959) is used by Dewey et at, 
(1965) to estimate the proportion of sporadic 
cases (9').

The incidence of the trait in the general 
population (I) is obtained by a direct enumeration 
or can also be estimated indirectly by using 
segregation as well as consanguinity analysis.
For data obtained through incomplete selection, 
Barrai et at, (1965) define the incidence of the 
trait as:

i - A/n N

where A is the number of probands in the 
populations at a given time, N is the size of the 
population and n is the probability of ascertain
ment (the probability that an affected individual 
is a proband).

In traits with heterogeneous aetiology, i.e. 
the traits which are produced by more than one 
locus and also sometimes include some non-genetic 
factors, equation (1.7) overstimates y. Dewey 
et at, (1965) have suggested the use of the 
detrimental equivalents approach of Morton (1960) 
to estimate the number of contributory loci (£) 
for these traits. Accordingly if X is the 
contribution of all factors other than autosomal
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recessives then the incidence o£ cases from normal 
parents I is given as:

I = 1-Ec.e“ (A+Bai)

A+Ba (1.9)

where A, B and a are pann iciic load. inbreeding
load and average inbreeding coefficient
respectively, given as:

A = X+Eq2t,

B = Eq(l-q)t, and

a = E c . a .l i

in which q is the recessive gene frequency, t is 
the penetrance and the summation for the values of 
A and B is over £ loci . The average coefficient 
of inbreeding (a) is obtained by summation over all 
the couples. The coefficient of inbreeding (ot̂ ) 
and ĉ  is the frequency of couples with the 
coefficient of inbreeding ov . If Q is the mean 
frequency of the trait per contributory locus, 
then A and B are given as:

A - AQ2+X, and (1.10a)
B * AQ(l-Q) (1.10b)

where £ is the number of contributory loci. From a b
equations (1.1^) and (1.1Ĉ ), the value of A is 
obtained as:

l > is2 /A (1.11)
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Thus:-
U 9 "I per locus per generation I1.12)

£

A similar approach can be used for lethal 
characters using the lethal equivalents method of 
Morton et al. (1956) .

Despite its intuitive appeal the semidirect 
method using segregation analysis suffers from 
ascertainment problems. Another limitation of 
segregation analysis is its restriction to single 
sibships, a11hough E1ston and St ewart (1971) hare 
suggested procedures involving pedigree analysis. 
However, the correction for ascertainment effects 
in pedigree analysis is still not adequate (Elston, 
1973; Elston and Yelverton, 3975). The useful
ness of this approach may increase in the near 
future with newer procedures to distinguish 
homozygotes from heterozygotes.

The utility of lethal and detrimental equiva
lent methods has also suffered from the inadequacy 
of the procedures to provide clear-cut answers.
As pointed out by Schull and Neel (1965) , a large 
proportion of the genetic load ascertained in the 
populations is segregational rather than 
mutational, which makes the interpretation of the 
lethal equivalents difficult. On the other hand, 
assumption of the uniformity of the mutation rates 
over all the loci contributing to the detrimental 
equivalents, leads to underestimation of the 
number oi: loci or, in turn, overestimation of the
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average estimate of the mutation rate per locus 
(Cava11i-Sforza and Bodmer, 1971). Some of the 
problems involved have been rectified by Morton 
et at. (1977) in their re-analy:is of the 
Colchester data on mental retardation.

Translating the load into an actual mutation 
rate, however, is an uncertain proposition because 
of the different contributions made by megaphenic 
and microphenic characters. No estimates of the 
two separate contributions have been made so far 
in man (Mukai, 1979).

Using the isolation by distance models, Morton 
et at, (1973) has suggested another approach to the 
question of mutation rate estimations. According 
to them, if Q is the mean frequency of the trait 
per locus and m the systematic pressure (Morton, 
1977), then y is given as

U = mQ/locus/generation (1*13)

1.2.4. Relative methods.
The question of relative magnitudes of mutation 

rates between different populations, loci, ages 
and sexes, is basic to the question of variability 
in mutation rates. The estimates of the relative 
proportions have the added advantage that one can 
extrapolate the basic mutation rate for simpler 
traits to traits with difficult aetiology. In 
addition, the relative estimates can provide some
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insight into the mechanisms of mutagenesis.
An aspect of the relative estimates of 

mutation rate which generated a good deal of 
controversy is the sex-difference in the mutation 
rate. If a mutation is considered as a replication 
error, the chances are that the mutation rates per 
locus per generation will be larger in males than 
in the females due to the differences in the number 
of cell divisions during gametogenesis. Argued 
similarly, one can associate chronological age with 
mutation rate.

It was shown by Haldane (1947) that in an 
infinite population at equilibrium for a sex-linked 
lethal gene one-third of ail the male cases will 
be children of the non-carrier mothers. Any 
deviation from this ratio of 1:2 may be assigned 
to the difference in the relative mutation rates 
in males (v) and females (u).

The ratio is given as:

v = _JL_ - 2 (1.14)
u e"

where s is the selection coefficient against the 
hemizygote male and 0 ' is the proportion of 
sporadic cases among all affected males. If v ~ u 
and s = 1, then 0 ' =  1/3, If I is the incidence 
of the trait then the mutation rate in females is:

u = 6 "I/locus/generation (1.15)
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and the value of v may he estimated using equations 
(1.14) and (1.15) as:

V 2 = (s- 2G ')I (1.16)

Davie and Emery (1978) have suggested another 
procedure to estimate the relative rates using the 
sex-ratio of the children of the carrier and normal 
mother. It is, however, a less efficient statis
tical method and is prone to the changes in the 
ratios if reproductive compensation is involved, as 
suggested by Lange et al. (1978).

Neel (1977) used the data for the number of 
rare variants per 1000 persons to estimate relative 
mutation rates between homologous loci and also 
between populations. As well he suggested the use 
of Ewens’ (1972) test statistics to find the 
significance of these differences.

Zouros (1979) has suggested a least square 
method for the estimation of relative magnitudes 
of mutation rate between any two loci. Using the 
relationship between the expected amount of 
homozygosity, E(F) and 0 (= 4Ny) given by Kimura 
and Crow (1964) for the infinite alleles model, 
the relative rate of mutation between loci x and 
y in the ith population is given by him as:

6 „.Fix
A

e r .Fiy

A

Cl .17)
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An estimate of F is obtained as:

F

Where P. is the sene frequency of the mth allele 

at the xth locus in ith population. For the two 

locij, x and y . studied in r populations there will

dimensional space. The slope of the straight line 

which passes through the origin and minimizes the 

summation of squares of distances of r points from

Z loci the relative rates of mutation are 

obtained by scaling to 1. One can similarly

use the relationship between expected amount of 

homozygosity and mutation rate under the step

wise model of mutation (Zouros, 1979).

Similar estimation procedures are obtained 

if the data on observed number of alleles (k) in 

a sample of 2n genes are used for estimating 6. 

Using the equation of Ewens (1972) for relating 

E(k) to 0 under the infinite alleles model 

Zouros (1979) gives the relative rate of mutation 

as :

be r estimates of hx/py* Plotting versus

2n-1

k- 0kix j_= 0__ ®̂_kix *
2n-1

IX (1.19
kiy

9kiy j=0 ^k:iy ^
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where k. and k. are the observed number of ix 1/
alleles in the populations x and >r respectively 
and 2n is the number of genes sampled
in populations x and y respectively.

The superiority of 6p over Gp has been shown 
already by Ewens and Gillespie (1974) for strict

A

neutrality. According to them Gp overestimates 
0 by 40% or more. Although this bias is claimed 
to be rendered negligible by Nei (1975) and 
Li (1979) if a number of loci are used to 
estimate F, this bias is increased greatly 
(Ewens, 1979). Since one locus is used at one

A

time to estimate F in Zouros’ method, this bias 
in the estimation of 0 is unavoidable.

However, it is difficult to extend Zouros' 
method to human populations because of large 
variations in the effective population sizes, 
which are considered to be of similar size in his 
method. However, considering that G is linearly 
related to expected homozygosity (Zouros, 1979), 
the relative proportions of heterozygosity 
contributed by rare alleles can be used to 
estimate the relative rates of mutation over 
different loci, which does not take into 
consideration the size of populations. This 
simplified version given by Bhat.ia (1981) is, 
however, intuitive rather than based on formal
theoretical basis.
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1.2.5, Poissonian approximation methods.
An indirect method to estimate mutation rates 

for both germinal (p. ) and the somatic (p ..)
o s

mutations lias been given by Hethcote and Knuds on 
(1978) for two-event (or more) mutational processes. 
The quantitative model using the Poisson distribu
tion relates the age-specific incidence of the 
character explicitly to the number of divisions 
of embryonal cells and to the rates of somatic 
mutations per cell division. The Poissonian 
approximations have, however, been challenged 
(Matsunaga, 1978) on the ground that both 
penetrance and expressivity in the gene carrier 
can be defined as a variable determined by 
genetic and environmental factors and not by a 
Poisson distribution of tumors formed.
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1.3. Estimates of H u t. a t i o n t< a t. e s •
Before the developments of molecular genetics, 

geneticists had estimated that the rate of spontan
eous mutation per locus is of trie order of 10  ̂
per generation in many higher organisms such as 
fruitfly. corn and man (Nei, 1975). A number of 
researchers, however, believed that this rate is 
too high (Cavalli- Sforza and Bodmer, 1971;
Yasuda. 1973). Serious sources of error in such 
estimates included the occurrence of phenocopies, 
incomplete penetrance, the polygenic nature of 
some of the mutations and the bias in the loci 
samp] ed..

1.3.1. Indirect estimates •
In the indirect methods more reliable estimates 

can be obtained for autosomal dominants and sex- 
linked recessive characters than for autosomal 
recessives (Neel, 1962).

The first indirect estimates, of mutation rate 
we re for syndactyly and polydactyly and were given 
by Danforth (1921) by noting that the incidence of 
each trait is less than 1 in 2,000 genomes and 
that each trait persists, on an average, three 
generations, which gives a mutation frequency of 
less than one in 6,000 genomes. Modern estimates 
began with Haldane (1935) and Gunther and Penrose 
(1935) who reported mutation rates for haemophilia 
and epiloia as 2 x 10  ̂ and 8 x 10  ̂ per locus per



generation respectively.
Lists of mutation rates for various traits 

have been compiled by Crow (1961), Stevenson and 
Kerr (1967). Conneally (1974), Edwards (1974) and 
Vogel and Rothenberg (1975). Only a few limited 
estimates of mutation rates for classical traits 
have been added or revised since then.

For a sample of 49 recessive loci on the
X--chromosome compiled by Stevenson and Kerr (1967) ,
a mean mutation rate of 1.97+_ 0.76 x 10  ̂ is given
by Yasuda (1973). It is worth noting that the
majority of these 49 loci exhibit mutation rates
of less than 1 x 10  ̂per locus per generation.
Recent refinements in the laboratory analyses of
carrier detection have allowed a comparison of the
results generated by using Haldane’s (1935)
equilibrium method with the direct investigations.
For example, Gardner-Medwin (1970), in a systematic
survey, has found that the mutation rate for
Duchenne muscular dystrophy diagnosed by CPK tests 

- 5(10.5 x 10 ') is in close agreement with the 
estimate obtained by using Haldane’s equilibrium 
method. On the other hand, Lesch-Nyhan disease 
does not exhibit equality in mutation rates between 
the two sexes (Franke et al., 19 76 ; 1977) which 
reflects on the utility of equilibrium models.
The need for using different equilibrium situations 
for males and females is obvious.
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Yasuda (1973) has also given the mean values 
for autosomal dominants and recessives as 2,50+_
0.61 x 10 0 and 2.93+ 0.45 x 10 ° for samples of 
23 and 9 loci respectively. These mean values, 
however, differ from the values for sex-linked 
traits by an order of magnitude. This difference 
may be due to a lack of data on traits with lev/ 
mutation rates for autosomal dominants and. 
recessives (Yasuda, 1973).

Indirect estimates of mutation rate from 
neutral allele models have also been made in 
several studies. In isolated South American 
Indians, Neel (1973) suggested a mutation rate 
of 6-8 x 10 per locus.

Later, with a
somewhat different approach, a value of 
4 .8 x 10  ̂per locus was obtained (Neel and 
Rothman, 1978). A series of other estimates on 
different world populations have been given by 
Nei (1977), Tchen et al. ^1978), Chakraborty and 
Roychoudhury (1978), Bhatia et al- (1979, 1981), 
Bhatia (1981b) and Chakraborty (1981). The
range of these estimates will be discussed in a 
later section.

1.3.2. Direct estimates-
In addition to the direct estimates of mutation

rate for autosomal dominant traits discussed in an



earlier section, there are only a few reports on
mutation rates derived directly from electromorph
data. Kimura and. Ohta (1973) extrapolated the
proportion of fresh mutations in the haemoglobin
variants to the frequency of variants in a
Japanese survey. Their calculations yield a

- 5mutation rate of 3.3 x 10 ‘ per cistron per
generation. Dubinin and Altukhov (1979) reported

- 5a mutation rate of - 6 x 10 per cistron per 
generation in a population from USSR for a set of 
protein loci. In a preliminary report Neel et al. 
(1980b) have also reported the recovery of one 
probable mutation in the offspring of "proximally 
exposed” parents from Hiroshima and Nagasaki. 
However, these authors concluded the data 
insufficient to provide a worthwhile estimate of 
mutation rate.

Harris et a7.(1974), however, found no 
mutations in 113,478 locus tests on inhabitants of 
the United Kingdom. Neel et al. (1980a ) has 
reported no recovery of fresh mutations- in 94,796 
locus tests on Amerindians of central and South 
America and 105,649 locus tests in Ann Arbor, 
Michigan. 208,196 locus tests on Japanese (Neel 
et al.1980b) also did not reveal any fresh 
mutations. Neel et al. (1980a) give the upper 
limit of the mutation rate at 95% confidence 
level for 522,119 locus tests as 0.6 x 10 ^/locus
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per generation in the combined total sample of 
all these populations.

1.3.3. Semi-direct estimates.
One of the recent estimates of mutation rate 

based on the detrimental equivalents is given by 
Morton et uZ.(1977). By discriminating between 
the socio-familial and the biological types of 
mental retardation, they have estimated an

- 5average per locus mutation rate of 2.4 x 10 
(for at least 351 loci with mutation rate per 
gamete of 0.008). These results contrast with an 
earlier estimate of 1.32 x 10  ̂ per locus (0.0019 
per gamete for 144 mimic genes) given by Dewey 
et al.(1965). It is instructive to note that 
Caval1i- Sforza and Bodmer (1971) had already 
corrected the minimum number of loci for mental 
retardation to 338, a value quite similar to the 
one given later bv Morton et al. (1977), after a 
revision using more sophisticated methods of 
segregation analysis. It will be interesting to 
see how much correction is to be made to a 
similar estimate on deaf mutism by Dewey et al.
(1965) .

Gardner-Medwin (1970) and Yasuda and Kondo 
(1980) have used the semi-direct method to estimate 
mutation rates in Duchenne muscular dystrophy.
The two estimates are 10.5 x 10  ̂ and 6.3 x 10  ̂

per locus per generation respectively. Bucher et al.



(1980) have used various methods to estimate the 
proportion of sporadic cases for Duchenne muscular 
dystrophy, although no exact estimate of the 
mutation rate was given.

1.3.4. Relative estimates.
The relative estimates of mutation rate for 

both sexes for sex-linked recessive characters 
have generated a good deal of controversy. Franke 
et el. (1976) and Winter (1980) have estimated an 
approximate ratio of 10:1 in male/female mutation 
rates. This ratio is, however, not significantly 
different from one. A similar magnitude is seen 
in haemophilia, although Duchenne muscular 
dystrophy does not reveal any such difference 
(Yasuda and Kondo, 1980; Morton, 1979).

Neel (1.977) found that the rate of mutation 
of the structural genes for polypeptides of haemo
globins and carbonic anhydrase did not show 
significant difference whereas the variants of 
PGM-j exhibited differences in the relative rates 
of mutation. Zouros (1979) has reported large 
ratios between the mutation, rates for various 
polypeptide chains in Drosophila although Bhatia 
(1981a) found the mutation rates in man to show 
a much smaller inter-cistron range.

1.3.5. Poissonian approximation estimates.
Hethcote ana Knudson (1978) have provided

two estimates of mutation rates for somatic cells



by the Po issonian approximation methods as 
- 73.9 x 10 and 4.8 x 10 ' mutations per locus per 

cell division. The order of magnitude for the 
mutation rates given by Hethcote and Knudson
(1978) is quite close to other such estimates 
based on direct observations on HLA variants in 
cultivated human lymphoid cells as also in other 
somatic cells, in vitro as well as in vivo, by 
Pious and Soderland (1977), Stamatoyannopoulos
(1979) , Stamatoyannopoulos ei al. (1980) and
van Zeeland and Simons (19 76) .
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Chapter 2

THEORETICAL FORMULATION

Most of the indirect approaches for the esti
mation of mutation rate outlined in Chapter 1 were 
formulated before the models of selective equivalence 
(Kimura and Crow, 1964; Kimura,
1968; Ohta, 1975 ; 1976;
Li, 1979a; Kimura, 1979b and Ewens and Li, 1980 ; were 
put forward. A number of variations of these models 
of mutation, based on an appreciation of the 
laboratory techniques employed to detect the genetic 
variability, have since been presented under the 
genera] framework of neutral mutation theory.

2.1. Neutrality Models.
The neutrality models will be discussed below 

under three headings:
1. Infinite alleles model
2. Infinite sites model
3. Step-wise mutation model

2.1.1. Infinite alleles model.
Kimura and Crow (1964) formulated the infinite

alleles model which assumes that an infinite sequence
of A^, A?,--, alleles can occur at any particular
locus. These alleles are selectively equivalent and
any gene mutates with fixed but unknown probability
to give rise to an allele of an entirely new type not 
currently or previously seen in the population'. The
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model predicts that the variability within a species 
in terms of average heterozygosity H per gene will 
be determined essentially by the product of the 
effective population size N and the mutation rate 
y per generation, rather than by N and y separately 
(Kimura, 1979a).

2.1.2. Infinite sites model.
To describe the genetic heterogeneity at the 

smallest level, Kimura (1969) suggested a model of 
mutation for the total genome at the level of 
nucleotides. The theory is also applicable to a 
small group of nucleotides, say a codon. Since 
the number of available sites (nucleotides or 
codons) for mutation is sufficiently large while 
the mutation rate per site is very low, every 
fresh mutation occurs at a site at which no mutant 
forms are segregating already. This assumption is 
known as infinite sites model.

The model of infinite sites was actually given
by Kimura (1969) for the whole genome. However,
to a sufficient degree of approximation the model
is applicable to a gene locus or cistron which is
made up of a finite number (several hundreds) of
nucleotides or codons, provided the number of
segregating sites per cistron is low (Kimura,

the1979b). In this regard , ̂ infinit.e sites model
are identical providedancl infinite alleles model ^ there

is no intra-cistronic recombination.
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2.1.3. Step-wise mutation model.
Both the above models, however, describe 

incompletely the genetic variability demonstrated 
by standard electrophoretic procedures. While the 
infinite sites model does not account for the 
conformational changes in the protein molecules, 
the infinite alleles model does not take into 
account the various charge changes which coalesce 
to form a single electromorph. Ohta and Kimura 
(1973) suggested a new model named the step-wise 
mutation model. Other workers have termed this 
the ladder rung model, the charge state model and 
the electrophoretic model to relate the demonstrated 
electrophoretic variability to the basis of mutation. 
A mutation leading to a charge change gives rise to 
a step forward or backward on the electrophoretic 
screen.

2.2. Generalised Neutrality.
Ohta (1973) modified the neutral mutation 

random drift hypothesis of Kimura (1968) and 
King and Jukes (1969) to incorporate selective 
constraint (negative selection). The model is 
based on the idea that selective neutrality is 
the limit when the selective disadvantages become 
infinitely small (Kimura and Ohta, 1974). Ohta 
(1975, 1976) described in detail the role of 
deleterious mutations in maintaining polymorphisms
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and later (Ohta, 1977) investigated a model in which 
selection coefficients against mutants follow an 
exponential distribution. According to Kimura 
(1979b) the model of Ohta (1977) has a drawback in 
that it cannot accommodate enough mutations which 
behave effectively as neutral when the population 
size gets large. Kimura (1979b) suggested that 
the generalized neutrality model should incorporate 
selection coefficients which follow a gamma 
distribution.

This argument has been developed further by
Watterson (1977, 1978a), Li (1977 , 197 8), Ewens
(1979a) and Ewens and Li (1980). Li (1979a)has
divided the mutation rate into two separate parts
i.e. p. . , and p . ... If f is the fractiontotal neutral o
of selectively neutral mutations in the total 
mutations then

^neutral ^o ^total

In the limit ( f -> 1 ) ,
yU , ! = ju. , ( Kimura, 197 7 ),neutral total v *

2.3. Neutrality-Theory and Estimation of Mutation Rate- 
The question whether data on electrophoretic 

variants in natural populations are in accord with the 
null hypothesis of strict neutrality has been 
investigated in several studies. In these a number 
of parameters of genetic variation, especially the
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amount of heterozygosity, the number of different 
alleles and the number of rare alleles, have been 
used by Ev/ens (19 7 7 , 1 9 79b), Ewens and Pel dman (1976) , 
Watters on (197 7 , 19 78a, b ) , Watterson and Anderson 
(1980), Nei et at* (19 76a), Fuerst et a 7. (19 77) , 
Chakraborty et al. (1978, 1980).

Since the utility of these various parameters 
in arguing the cause of neutrality is well establi
shed, these same parameters can be usefully 
employed as statistics to estimate the rate of 
mutation as suggested by Neel (1973) , Nei (1.977) ,
Neel and Thompson (1978), Rothman and Adams (1978) 
and Chakraborty (1981). A number of other relation
ships between the mutation rate and different 
aspects of genetic data given by Ewens (1964,
1972, 1979a), Kimura and Crow (1964), Karlin and 
McGregor (1967) and Watterson (1974) can also be 
used to generate estimates of mutation rate.

2.4. M athematical. Formulation.
In the following sections various mathematical 

formulations, their simple approximate and. exact 
forms, as used by these various workers, will be 
outlined. These different methods utilize a variety 
of data and use quite different modelling procedures. 
Broadly, we can group these approaches under three 
headings, i.e.
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1. Diffusion approximations
2. Branching process models
3. Equi1ibriurn models

2.4.1 Diffusion approximation methods.

Let 0 (x) define the frequency spectrum having 
the property that 0(x)dx is the mean number of alleles 
in the population with frequency in (x,x+dx).
According to the infinite alleles model of Kimura and 
Crow (1964) , the expression is given as

where 6 = 4Ny>in which N is the actual size of the 
population and p is the rate of mutation of the allelic 
level.

For infinite sites model, the frequency spectrum, 
4(x), is given by the irreversible mutation model of 
Wright (1938) as

where v is the rate of mutation per codon or nucleotide.

For the step-wise mutation model, Kimura and Ohta 
(1975) have given the equation for this frequency 
spectrum as

$ (x) = 9 x  ̂(1 -- x) ® ^ (2.1)

4- (x) = 4Nvx -1 (2.1a)

r (g +b "h-i )
$(x) r ( e ) r ( R ' + i ) ( 2 . 2 )
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where  6 -  4 Ny , B^=(.l + 4Ny- / ITS Ny) /  ( /T+SNy ^T) and F ( . )  

i s  a gamma f u n c t i o n .  H e r e a f t e r ,  we s h a l l  d e n o t e  

4 (x) unde-* t h e  i n f i n i t e  a l l e l e s ,  i n f i n i t e  s i t e s  and 

s t e p - w i s e  m u t a t i o n  model s  as  $ ( x ) d x ,  4>.(x)dx and 

$ 2 (x ) d x ,  r e s p e c t i v e l y .  Nei  e t  a l  (1976b)  g i v e  t h e  

f r e q u e n c y  sp e c t r u m  f o r  t h e  v a r i a b l e  m u t a t i o n  r a t e s  

model  w i t h  t h e  gamma d i s t r i b u t i o n ,  as

0x ^ ( 1 - x )  ^
$ (x )  --------------------------------- ( 2 . 3 )

[ 1 - 0 / a J l o g ( 1 - x ) 01 + 1

„  2
where a = 9 /VQ i s  t h e  p a r a m e t e r  o f  t h e  gamma d i s t r i b u t i o n

in  which  6 and VA a r e  t h e  mean and v a r i a n c e  o f  t h e
ü

v a r i a t e  i n  q u e s t i o n  ( 6 ) ,  r e s p e c t i v e l y .  When t h e  

v a r i a n c e  o f  6 a p p r o a c h e s  ze ro  w i t h  G c o n s t a n t ,  a t e n d s  

t o  °°. In t h i s  c a s e  ( 2 .3 )  t e n d s  t o  ( 2 . 1 ) ,  as  e x p e c t e d .

The f r e q u e n c y  s p e c t r u m  4 (x) can be u s e d  t o  f i n d  

e x p r e s s i o n s  f o r  two d i f f e r e n t  p a r a m e t e r s  namely  t h e  mean 

number o f  d i f f e r e n t  a l l e l e s  i n  t h e  p o p u l a t i o n .  (K) and 

t h e  p r o b a b i l i t y  t h a t  any two genes  a r e  o f  d i f f e r e n t  

a l l e l i c  t y p e s  ( H ) .

Thes e  p a r a m e t e r s  a r e  g i v e n  as
1

K - S’ 4>(x)dx (2*4)
1

1
H = /  x ( l - x ) $ ( x ) d x  ( 2 .5 )

0



2.4.1.1. The samp1ing theory,

Suppose a sample of n individuals (or 2n genes)
is drawn from a popular ion of size N (or 2N genes).
It is assumed that n<sN so that, although sampling is
without replacement., binomial sampling formulae can be
used to a sufficient degree of approximation.

2n
Let E k. = k represent the number of alleles 

j =1 ^
in the sample, where j represents the number of copies
by which an allele is represented in the sample and k..
is the random number of alleles represented by j genes.
Let represent the number of genes of the first
allelic tyrpe, n7 the number of genes of the second

z k
allelic type, and so on. The summation E n. equals

j=l J
the total number of genes samples or 2n. Ewens (1972) 
and Karlin and McGregor (1972) have shown that the 
probability of the random vector

(k; . n2 n]c is’
Pr (k; n 2 j n 2 * >  ̂j,)

2n:ekr(0)
-----------------------  (2.7)
k!n^ n^ ... F(2n+9)

From (2.7) theprobability distribution of k is found as
k k

Pr(k) = S 0 r(9)/r(2n+0) (2.8)
2n
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k
where S9^ is the absolute value of a Stirling number 

of the first kind (Ewens, 1972). From (2.7) and (2.8) 

we get the conditional distribution of allelic frequency

2n 1px- Cni, n2> - * nk|k) K (2.9)
k:S2n nl n 2''‘nk

Note that this conditional distribution is 

independent of 9 which implies that k is a sufficient 

statistic for 9. By sufficient statistic, we mean 

that all the information about 9 is contained in k and 

that the relative frequencies of various allelic types 

do not yield any additional information on 9.

Statistical theory shows that the inclusion of n^, n ^-- ,

n^ or any statistic derived thereof in the inferential 

procedure may only introduce noise. The maximum
A

likelihood estimate 9^ of 9, given k, is then found by 

using the equation (Ewens, 1972),

E(k) = 0J|j-[l-x) ̂ n ]x ^(1-x)0 J dx (2.10)
0

2n -1 1
9 2 (9 +j) "1

j=0

Similarly, once k is observed, we estimate 6 by 9, 

given as the solution of the equation
A

. °k
A

ek

< CD

k = —  + —̂  -f- • • « 7̂--
0k 8k*J 9^+171-1

A

The value of 9^ can be calculated numerically for

given value of k and n . Ewens (1972) has provided

ready reference tables which can be used to estimate 91
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The sampling equation (2,10) can also be used 

to obtain E(k;q.aL?), the expected number of alleles

in the sample whose sample frequency is between 

q. cT q^. This is given as

(2.12)

An approximate solution of (2.12) is

E(k) - 01og(q2/q1) - 0 (0-1) [q2-q1] (2,14)
*

We define k as the random number of segregated sites.
k

The E(k ) is given as

Where E(k ) is the expected number of segregating sites 

and = 4Nv.

Another estimator of 0 which has been commonly
/V A

used is 0p based on the amount of homozygosity (F) 

obtained in the sample. Kimura and Crow (1964) have

0 f x  ̂dxE(k )
1
2n

61og (2n) (2.15)

calculated the mean value of F to be

E(F) = (2N(l-p)2-2N+l)

- (1 + 6 ) ^

when F is defined as

F = X ( 2 n p ?/2n2

(2.16)
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is then given as
/N

The estimator 8p / F 1 1 (2.18)

This estimator is, however, biased. Ewens and 
Gillespie (1974) have shown through simulation that the 
mean value of 8p is consistently about 40% or more in 
excess than the actual value of G. Besides these 
estimates have poor sampling properties (Bodmer and 
Cava.lli-Sforza, 1972) .

A number of variations of the random variable 
k, the number of different alleles, have been suggested 
for estimating 6. These include:

1. The total number of alleles (k)
2. Rare allelic variants (k )
3. Singletons (kg)

The use of the total number of alleles, k, to 
estimate 6-, using infinite alleles neutrality model 
of Kimura and Crow (1964) also runs into difficulty 
when the data are on electromorphs. This is because 
the more frequent electromorphs encompass a variable 
number of silent allelic substitutions for which 
information is lost in the estimation procedures. 
Besides, the role of selection in maintaining these 
high frequency alleles cannot be ascertained.

Nei (1977) and Chakraborty (1981) have advocated 
the use of alleles segregating in the lower frequency 
ranges, specially those with sample frequencies of less 
than 0.01 or 0.05 for calculating 9̂ . Although the 
choice of these arbitrarily designated rare alleles for
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calculating 0^ entails loss of a certain amount of 

information, this loss is compensated by a better fit 

of the data on electromorphs to the infinite alleles 

model when only rare alleles are used.

2.4.1.1.1. Total number of alleles (10
A

In the infinite alleles model, the estimate 9,? k
of 0 is found from the equations

k - 1 +
ek+1 e, + 2k ek+n'1

values of 0 ^or Saven 15 anc  ̂ k can x°e found either from 
the tables in Ewens (1972) or numerically.

For the infinite sites model, Ewens (1974) gives *
the estimator 9y 9 as

/•v *

0  1
*k /S2n-1 (2.24)

where S2n -1 is defined as ^n y^--l and for large 2n .is ̂ .1
.1=1

approximated to log (2n-1)+y.

2.4.1.1.2. Number of rare alleles (k ).v rJ

Nei (1977) and Chakraborty (1981) have advocated 

the use of number of rare alleles, i.e. only those 

alleles whose sample frequency is equal to or smaller 

than a specified value of q (taken arbitrarily as 0.01 

or 0.05) to estimate 0. Their argument is based on 

the realization that the probability of a low frequency 

electromorph being composed of more than one aminoacid 

substitution is very low. In addition, the role of 

selection in maintaining these rare alleles in the
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population is negligible.

Nej (1977) equated the mean number of alleles 

segregating in the population in the frequency range
_ j[(2n) ,q 3 to the number of alleles, whose sample frequency

_ i
is within the range, f(2n) yq) recovered in a sample 

(k^) using the steady state formula of Wright (1938).

This method of moments approach yields an estimator of

0̂ . defined by 
r

-i *i
(x) dx

2n

= 01og(2nq) (2.25)

Using Nei’s approach, the number of rare alleles 

in the sample are equated to the mean number through 

the equations

j 4>(x)dx 
2n 1

- ^iog(2nq) -6V (6V -l){q-^n } (2.26)k vvk r r

to give Cu. where <±>(x) is already defined. Equations 
iVr

(2,25) and (2.26) yield almost similar values for large 

2n.
Chakraborty (1981) has extended the equation 

(2.19) given by Chakraborty et al (1980) to rare alleles 

to provide an estimator of 0V , which is given as

k h f q] C2n)!
1 j=l j (2n-j) : r(2n + e, )

f(2n+ r-j)
(2.29)

where [2nq] is the largest integrator in inner expression 

arid f (.) is the gamma function. The approximate
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solutions of (2,29) is given as

(2.31)

[2nq]
and B - Z (2n-j) 

3 = 1

For the infinite sites model, the binomial

sampling equations lead to

[2nq] 2n 1 ? _-•
E(k*) = Z ( ) / x-! (l-x)“n -1 (x)dx

j=l .1 o

[ 2nq] 2n 1
= 0 Z ( )

j =1 j 0

[2nq] 2n
= 9,Z ( ) 3 (j ,2n-j +1) (2.36)
3=1 j

where 3 (.,.) is the beta function. This leads to

k ,= AO^ - BG^
Kr Kr

where
[ 2nq]

A = I j 
3=1

. -1

*  un<r -1k = e,E j 1 = 0A (2.37)
j=l

which for large [2nq] is given as

k* - öj(log 2nq+y) (2.38)

Notice that (2.25) and (2.38) are quite close for 

large [2nq], although (2.37) always yields smaller
A

estimates of 9^ .
r

Before turning to consider the step-wise mutation
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model, it is important to notice that the infinite 

sites model without recombination is identical to the 

infinite alleles mode.! . Besides, for alleles with low 

frequency the expected number of different alleles 

in a sample approximates well the number of different 

sites segregating (Nei, 1977). Any difference in 

the results using these two models must, therefore, 

be related to different aspects of allelic data used, 

as input.

For the step-wise mutation model, the form of

equation (2.29) is given as 
[2nqj 2n

E(k ) = T. ( .) B fB' + j ;6 + 2n-j)/u(6B' + l) (2.39)
r j=l ] 1

where b (.,.) is the beta function and B^is as given 

in (2.2). This expression is practically identical 

to (2.29) for 0<O.Oi as seen in extensive numerical 

computations by Chakraborty et ai (1980) .

2.4.1. i . .3 . Number of singletons (k ) .

An exact solution of (2.19) may be obtained for 

singletons or single copy alleles in the sample (k ). 

By taking the binomial sampling equation for j=l, we 

get

E(k ) = 2n f x(l-x)2n  ̂ $(x)dx 
s 0

= 2nC / (1-x) 2n + 0'flx 
0

2nG/(2n+0 -1) (2.40)
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which yields a method of moment estimator, 6^ , as
s

0, ks (2n-l)

s (2n-kg) (2.41)

where k^ is the observed number of singletons/locus 

in the sample. For infinite sites model.

°lks ks/Zn (2.42)
■k

where k is the proportion of sites segregated as 

singletons. The equation (2.42) is quite similar to 

(2.41) for large 2n.

The above solutions of the sampling equations 

have been given on the assumption of sampling from 

an infinite population with random mating, without 

replacement. This is not approached in actual situations. 

While the sampling procedures for finite populations will 

be taken up in the next section, it may be relevant 

to include the role of inbreeding in recovering the 

number of alleles in the population.

Templeton (1980) has given the appropriate 

expected number of neutral alleles under the infinite 

model, as

E (k I a) = £l-[l-x] 4'+ax(l-x) ] 
0

2n-l 2n-j 
= E(k j a=0) - 0 E

(x)dx

f (2 n +1)T (2 n+j + 0)

j =0 2n-j r(j+l)r(2n+0) (2.43)
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where E(kjcx = 0) is equation (2.11); 2n T and 6 are 
already defined. It is readily seen from (2.43) that the 
mean number of alleles recovered in a sample decreases 
with increase in a, the inbreeding coefficient of 
the population. No simple expression for 0 in 
terms of E(kja), leading to an estimator based on k 
is, however, available.

In an earlier section it was pointed out that 
0p is a biased estimator of 0. For 0.6<0<2.0, Ewens 
and Gillespie (1974) show, by simulation, that the

A

mean value of 0p is rather consistently about 40% or
A

more in excess of 0. Although 0^ is also a biased 
estimator (no unbiased estimator of' 0 exists; Ewens, 
1979a), its bias decreases to zero asymptotically.
For 2n=200, the bias is negligible (Ewens, 1979a).

A

Furthermore, 0^ has very small mean square error
A

typically l/7th or l/8th of 0p. In the context of 
strict neutrality there appears no excuse for

A

estimating 0 through F.
Under generalized neutrality, however, the 

above comparison does not hold universally for the large 
values of a"=2Ns, where s is the selection coefficient.

•A. /\

For large a', 0p has less bias than 0^ under a number of 
conditions. It might seem paradoxical then to estimate

A A

0 from 0-, when a " is low and from 0 when ex'* is k  F

high for the property of unbiasedness. In addition, the 
two estimates will then represent "total" 0 and
"neutral” 0.
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In dealing with protein data, when strict 
neutrality is presumed but not either proved or 
disproved using a statistical test, the choice of
/s
0r may fortiutously, provide a less biased estimate 
t ' *

A

if the bias is removed by defining a new estimator Gp , 
defined by

0* - 0.71 0r (2.44)
F b

This new estimator is designed to allow for the 40%
A A

bias in 0p. Thus 6* will be an approximately 
unbiased estimator of ’total* 0 i.e, when a"=0 
and an unbiased estimator of ’’neutral only” 9, 
whichever might apply. This blind estimation procedure 
is the only alternative, unless a strong test statistic 
are developed to discriminate between the various 
aspects of neutrality.

2.4.2 Branching process models.

Alternative approaches to estimate the mutation 
rate from protein data were suggested by Neel and 
Thompson (1978) and Rothman and Adams (1978) using 
branching process models. Fisher (1930) and Karlin 
and McGregor (1967) had earlier considered these models 
for estimating the total number of heterozygous loci 
in the genome and number of alleles represented by j 
copies in the population, respectively.
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One of the advantages in working with branching process 
models is that the assumptions of fixed population size 
and equilibrium are not required to describe the 
transition of one allele from the jth allelic state 
to ith allelic state where an allelic state is defined 
by the number of copies by which an allele is 
represented in the population. However, for the 
estimation of mutation rate these questions are 
d i ffi cu 11 t o avo i.d.

2.4.2.1. Rothman and Adams' method.

Let denote the number of different single 
copy alleles segregating at a locus in a population 
in tth generation. The presence of these alleles 
can be attributed to three different sources, 
provided there is no immigration/emigration and 
intragenic recombination is low. These sources are:

(1) New mutations introduced in the tth
t tgeneration at a rate 2N y where N ' is the 

population size in the tth generation. It is 
assumed that an infinite series of alleles can 
be generated at this locus i.e, every new 
allele is a novel allele,

(2) The drift of higher frequency alleles in 
the t-lth generation to the singleton class in 
the tth generation,

(3) The retention of singletons in the t-lth 
generation as singletons itself in the tth 
generation.
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The drift to and retention of singletons is
given by the probability transition matrix P
where individual elements of the matrix P.. indicate31
the probability that an allele present in j copies 
in the t-lth generation is changed to i conies in 
the tth generation. Quantitatively, this is given 
by Rothman and Adams (1978) as

E(K ) - 2Ny+ K Cj)P .
j=l 3 (2.49)

where E C ) is the expected number of singletons in the
population, g(i) is the relative proportion of alleles
each represented by j copies in the populations,^ is
the expected number of alleles in the population and
P_. ̂ is the transition probability vector. This
equation represents the balance, at equillibrium
between the expected number of alleles entering the
singleton class and those alleles which exit.

The method of Rothman and Adams of course, 
assumes that the mutational events are given under 
the infinite alleles model. The form of the equation 
(2.49) implicitly also assumes that mutation is 
introduced as a replication error during gametogenesis 
and is expressed phenotypically in the offspring.
This being a unique event under the infinite alleles 
model, the possibility of a similar slip occuring again 
in the gametes of the parents is negligible.
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An alternative model for the occurrence of 
mutation has been, put forward by Vogel (1970;
1975). Under this model the mutation is introduced 
in the non-expressible form in the gamete cells of 
one of the parents. The probability of transmission of 
such mutations is governed by the usual demographic 
processes. The form of equation (2.45) under this 
model will be

E(V) !2N1'V f 7 '1 ] Pll+K1;_lZg(i3P,l
j=2 J

2Nt'1yPu + Kt'1Zg(j)Pjl 
j “ 1

(2.50)

Expanding over £ generations, and after rearranging 
we get at equilibrium:

E(Ks) = 2NyP11 + KZg(j)P
j =  1 J

(2.51)
The model derived here, however, assumes that the 
mutations are introduced during the pre-pubertal 
period. Adjustments to the transmission probability 
Pj^ (associated with fresh mutations) will have 
to be made if the mutation is introduced in the gametes 
of the parents during the reproductive period.

Although the second model is not entirely 
acceptable (Vogel, 1975), the above equations have 
implications when the model is extended to expanding 
or contracting populations. While under the first 
model the mutation rate is measured in terms of the



size of the tth generation population size, under 

the second model the size of the previous generation 

is taken into consideration. A comparison of equations 

(2.45) and (2,51) reveals that, under the first 

model, the adjustment for the size of the previous 

generation is not admissible.

Rothman and Adams (1978) have given the 

equation which takes into consideration the growth 

rate per generation in the estimation of K , Accordingly,

2Nt ‘1y + H  Zg(j)Pn  
j=l J'

(2.52)

which is an extension of the approach taken by Lea 

and Coulson (1949). However, this equation is not 

extendable to any of the two models of mutation

mentioned earlier.

Neel and Rothman (1978) rewrite the expression

(2.49) as

2Ny + K Zg (j)?.-, 
j > 1 -

K(l) (1-Pn )

(2.53)

which expresses the balance between the number of 

singletons lost and gained per generation. This 

equation has as unknowns, besides p, the quantities
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The elements of transition probability matrix 

P are calculated as

Pji
m i n (i , j) 

£
h=l

Ch)(i-h^1-T^)j'hbhci'h (2.54)

where b and c are the parameters of geometric 

distribution.

The population values of g(i), the expected 

relative frequencies of the alleles, are obtained 

as

^g (j)pjl=g(i)
j=1 (2.55)

for i>2. The relative frequency of g(l), however, 

is given as

g(l) - Zg(j)Pj]L + 2Ny/K
(2.56)

The estimation of the relative proportions g(j), 

however, needs a well documented demographic data on 

the population as also extensive computations. In the 

absence of such data, the rough estimates of g(j) 

can be obtained from the observed distribution of rare 

alleles by taking the number of copies over a set of 

protein loci for sufficient sample sizes.

Using hypergeometric sampling, Rothman and Adams
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(1978) give the estimated number of alleles in the 

population, using the number k in the sample, as

K - k

2N
U -  2 g(j) 

j=l

2N- i
( *) 2n — s

(2N)
2 n

(2.57)

the binomial approximation of which is
^  2n .j

K = k/[l- Z g(j) (1-f)
3=1

(2.58)

where f - n/N is the sampling fraction. For j>30, 

g(j)(l-f)^ is negligible and the summation may be 

truncated.

The estimation procedure of Neel and Rothman 

(1978), however, is very difficult to utilise since 

there are too many unknowns. In the absence of well 

documented demographic data over a number of generations, 

calculation of the values of the elements of probability 

transitions matrix is difficult.similarly the population 

values of g(j) are not known. Furthermore extrapolations
A

of the values of k to obtain K is a very uncertain 

proposition since k is a random variable rather than an 

expected value.
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2.4.2.2. Nee'l and Thompson's method.

Thompson and Neel (1978), using the tth generation 
distribution forms of the number of copies given by 
Keiding and Nielsen (197S) have given the parameters of 
cumulative distribution for the two-parameter-geometric 
form. Neel and Thompson (1978) utilize these results 
to give an estimator of mutation rate as

T
K (Aäj) = nN E {(I---i-)j -i > 

t t t
(2.59)

where represents the number of alleles with more 
than or equal to j copies in the population/locus, and 

is the tth generation mean value of replicates 
conditional on non-zero. However, the summation on 
the right hand side is unbounded which, for the private 
variants, may be truncated to include only the time 
since tribal differentation. The approach is quite 
useful for utilizing information on private polymorphisms.

2.4.3. Equilibrium methods.

The diffusion approximations approach outlined 
above helps in arriving at some of the results in 
simple approximate forms. These approximations are, 
however, based on a number of assumptions which may 
be considered unrealistic for natural populations.

Included in this section is the equilibrium 
approach of Ewens (1964) and Kimura and Ohta (1969),
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the forms of which are estimated by using diffusion 
approximations. The details of this method 
are already given in Chapter 1.
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Chapter 3

THE FREQUENCY OF PRIVATE ELECTROPHORETIC 
■ VARIANTS AND INDIRECT ESTIMATES OF 

MUTATION RATE

3.1. Introduction.
The present chapter makes use of some of the 

methods outlined in Chapter 2 for indirectly esti
mating the rate of mutation from electrophoretic 
data for various world populations. Some of the 
results included in Section 3.2 have appeared 
already in a series of papers: . Bhatia et al. (1979)
on Australian Aborigines; Bhatia et al. (1981) on
Papua New Guineans and Bhatia (l-981b) on some 
Scheduled Tribe populations from India. These 
results are presented here with some modifications. 
In addition, estimates have been generated on some 
Khoisan and Negro populations of southern Africa 
and included in Section 3.2.4.

Since the above mentioned papers were written 
another estimation procedure has been suggested by 
Chakraborty (1981). In addition, some other aspects 
of the allelic data (e.g. singletons) obtained 
through sampling, can be used to generate estimates 
of mutation rate. To update the results, further 
estimates of mutation rate on Australian Aborigines, 
Papua New Guineans and tribal populations from 
India have been made and are given in Section 3.2.5.
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For each of these populations a brief resume 
of the population is given, followed by the listings 
of the laboratory data and the parameters required 
in estimating the rate of mutation by the various 
methods used. The estimates of mutation rate in each 
population are then discussed individually.

3.2. Estimates of Mutation Rate.
3.2.1. Mutation rate in Australian Aborigines.
3.2.1. 1. The study population.

At the time of first European contact, the 
Aborigines were spread across the Australian conti
nent, having exploited, with few exceptions, all 
the available ecological situations. Their 
presence in the continent is dated back to at least
40.000 years, though the occupation of the more arid 
areas in the center probably took place no more than
10.000 years ago (Kirk, 1981). At the time of 
European contact the population of Aborigines has 
been estimated at about 250,000 (Radcliffe-Brown, 
1930), and the population was divided into several 
hundred tribal and local groups varying in size
from 100 to several thousand persons (Tindale, 1974).

During the last 200 years the Aboriginal popula
tion of Australia fell dramatically, reaching its 
lowest reported level in the census of 1921. This 
population decrease was not uniform; in some areas 
such as Tasmania, the eclipse was total while, in 
many others across the southern portion of the
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continent, there are few, if any, persons of full 
Aboriginal descent remaining. In areas more remote 
from European settlement the decline in numbers was 
less, but even here the total may have been reduced 
to 50% before the increase in population characteri
zing the present situation commenced. The present 
analysis is based on samples from this area of 
minimum disturbance shown in figure 3.1.

There are no accurate records of the age 
structure in traditional Aboriginal populations 
(Smith, 1980). Available data refer to populations 
already exposed to varying degrees of European 
contact. At present, the age structure for persons 
of full Aboriginal descent shows a heavy-based 
pyramid with only 41.6% in the 15-44 years age 
group (Commonwealth of Australia, 1975). In the 
traditional situation, each population may have 
varied in demographic parameters influenced by 
natural disasters such as prolonged drought or 
cyclones. Such factors may have led to drastic 
reductions in number followed by subsequent 
population expansion or by replacement through 
migration from neighbouring groups. Over a 
longer time period, however, we assume that the 
population of the continent was in equilibrium, 
and that the average net increase was zero.

Since the precise boundary of the total 
Aboriginal population in our surveys is difficult
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Pig. 3.1 Map of Australia showing areas 

sampled (diagonal hatching) and 
tribal territory of the Waljbiri 
(cross hatched).



to define, I have provided data also for one 
specific tribal group, defined by the spoken 
language Waljbiri, one of the largest linguistic 
groups in the Northern Territory. The Waljbiri 
territory (see fig .3.1) covers 35,000 -40,000 
square miles of arid and semi-arid country, and 
the population density averages one person per 
25-27 square miles (Meggitt, 1962).

Meggitt’s detailed study of the Waljbiri 
revealed that the dialectical Waljbiri tribe is 
further divided into four subgroups, namely, 
Yalpari (Lander), Waneiga, Walmalla and Ngalia. 
Marriages between the subgroups are frequent, 
according to Meggitt. Tindale (1953), however, 
found only 1.3% marriages between Ngalia and 
Walmalla, and no Yalpari-Waneiga marriages were 
recorded. Birdsell (1970) claims that before 
1935, the Ngalia subgroup was quite distinct from 
the other Waljbiri. Intertribal marriages 
involving Ngalia, however, were significantly 
higher at 61-7%.

The Waljbiri in this series were sampled 
mainly at two localities, Yuendumu and Hooker 
Creek. The Yuendumu Waljbiri predominantly 
belong to the Ngalia subgroup, though some reside 
also at Hooker Creek. Although I have pooled the 
results for all Waljbiri, the data indicate a 
clear-cut heterogeneity between the populations



at these two localities.

3.2.1.2. The laboratory data.

This analysis is confined to data for red cell

enzyme proteins and haemoglobin, representing

products of genes at 25 loci. The basic data have

been tabulated recently by Blake (1979) and are

summarized in table 3.1. A total of 16 detected

variants restricted to Australian Aborigines are

listed in table 3.2, together with the number of

copies observed and their gene frequencies. Three
3 9 4of the variant alleles {PGM^, C A and CA^) have

achieved frequencies above 1% and can be classi-
E1 c h ofied as polymorphic. Two others (PGD and

PEP B^) have allele frequencies approaching 1% , 

and the remainder are more restricted, the number 

of copies ranging from one to 14. Table 3.2 also 

shows separately the number of rare variants 

detected in the Waljbiri tribe. Only five of 

the 16 rare variants among Aborigines were 

detected among the Waljbiri, four of these being 

polymorphic in this tribe, while the other (PEP B0') 
has an allele frequency of 0.74%. Three of the 

polymorphic alleles among the Waljbiri are poly

morphic in Aborigines in general. In the case of
7the other peptidase variant allele (PEP B ), 13 

of the 14 copies occurred among Waljbiri, the 

other example being found in Luridja, a group 

known to intermarry with the Waljbiri.
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TABLE 3.1 GENETIC MARKERS IN AUSTRALIAN ABORIGINES

(Based on Blake, 1979)

LOCUS
NO. ENZYME SYSTEM ABBREVIATION SAMPLE

SIZE

1 6-Phosphogluconate dehydrogenase 6PGD 4035

2 Acid phosphatase-1 ACP 1 4016

3 Phosphoglucomutase- 1 PGM 1
3919

4 Phosphoglucomutase-2 po m2 3790

5 Peptidase A PEPA 3034

6 Peptidase B PEPB 3189

7 Carbonic anhydrase-1 CA1 3751

8 Carbonic anhydrase-2 CA2 3751

9 Glyoxylase GLO 1290

10 Adenosine deaminase ADA 1437

11 Esterase D EsD 1556

12 Glutamic pyruvic transaminase GPT 1391

13 Hemoglobin-a Hba 2692

14 Hemoglobin-ß Hb 3 2692

15 Diaphorase DIA 1861

15 Glucose-6-phosphate dehydrogenase G-6-PD 1014

17 Malate dehydr^genase-2 mdh2 2964

18 Superoxide dismutase SOD 1795

19 Lactate dehydrogenase-A LDHA 4180

20 Lactate dehydrogenase-B LDH B 4180

21 Isocitrate dehydrogenase I CDs 1226

22 Phosphohexose isomerase PHI 1569

23 Adenylate kinase- 1 AK1 3535

24 Phosphoglycerate kinase PGK 1569

25 Glutamic oxaloacetic acid transaminase GOT 748
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TABLE 3.2 THE NUMBER AND FREQUENCIES OF PRIVATE 

IN AUSTRALIAN ABORIGINES

VARIANTS

TOTAL POPULATION WALJBIRI
SR.
NO. ENZYME VARIANT Number of 

Copies
% Gene 

Frequency
Number of 

Copies
% Gene 

Frequency

i 6-PGD „^ElchoPGD 65 0.81 0 0.00

2 PEPA PEP A3 1 0.02 0 0.00

3 PEPB 6PEP B 53 0.83 6 0.74

4 PEPB 7PEP B 14 0.21 13 1.43

5 p g m ;l 6PGM1 4 0.05 0 0.00

6 PGM1 7
p g m l 1 0.01 0 0.00

7 p g m 2 PGM3 103 1.36 46 5.68

8 p g m 2 6 0.08 0 0.00

9 ACPl ACP^ 1 0.01 0 0.00

10 C A 1 CA1 192 2.53 36 4.44

11 CA1 c a J-0
L

8 0.11 0 0.00

12 CA2 CA2 166 2.21 14 1.73

13 l d h b
SLOWLDHB 1 0.01 0 0.00

14 LDHA LDH SL0W A 2 0.02 0 0.00

15 G-6-PD FAST
m b

1 0.04 0 0.00

16 PHI PHI4 1 0.03 0 0.00



6 7 -

3.2.1.3. Estimation of k , k and K.
z r

For the total Aboriginal population, 25 

enzyme loci have been studied. Of these, 13 

showed no polymorphism by the standard definition 

where the least common allele frequency did not 

exceed 1%, but private variants were detected at 

four of these loci. Twelve private variants were 

distributed among eight of the 12 polymorphic loci 

The mean sample size (table 3.3 ) for the poly

morphic loci without private variants (1,419) is 

significantly lower than those with private 

variants (3,686). In my data, therefore, the 

probability of detecting private variants among 

known polymorphic loci increases with sample size.

The data in table 3.3 clearly show that the 

value of k varies also with the type of loci 

(polymorphic or monomorphic). The probability of 

detecting private variants increases with sample
A

size, which will also influence the value of k.

In Nei's method (1977), k is calculated only 

from those private variants which are not poly

morphic. The differences for all loci between k̂ .
/\

and k^ is 0.12 for the total Aboriginal population 

For the Waljbiri population, the only private
7variant (PEP B ) is polymorphic. Since it is an 

exclusive tribal marker for the Waljbiri, I have
A

used it in the calculation of k^, giving a value

of 0.04.
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The estimates of K obtained by using the 
binomial approximation sampling method of Rothman 
and Adams (1978) are 1.40, 0.48 and 1.07 variants 
per locus for polymorphic, monomorphic and total 
loci respectively. The values of g(i) used in 
these extrapolation are based on the observed 
values. For Waljbiri tribal group we use the 
g(i) values estimated for the total sample which

/N

gives an estimate of K as 0.056.

3.2.1.4. The estimation of actual (apparent) 
population size, N.

As explained earlier, with the data available, 
it is not possible to give a precise estimate of 
the actual population size because of changing 
reproductive patterns among Aborigines. Here I 
use the population in the 15-44 years age group in the 
1961 census year, adjusted for the proportion of 
the total population in the surveyed area.

The population of full descent Aborigines in 
Australia in 1961 was 36,137 (18,899 males; 17,238 
females), of which 41.6% were in the age cohort 
15-44 years (Commonwealth of Australia, 1975), 
and the area surveyed contains approximately 60% 
of the total full descent population. This gives 
a value of N=9,160.

It can be argued that this does not represent 
the effective population size of Australian



Aborigines during most of their stay on the 
continent. However, indirect evidence suggests 
the difference in age structure in traditionally 
oriented societies is not likely to be very 
different from the value used here. For example. 
Tindale (1974) has recorded approximate age compo
sition for three nomadic bands encountered in the 
central desert areas. The mean value for the 
adult composition of these bands is 28.0%. Since 
this covers the age range 20-40 years, the composi
tion of the 15-44 cohort will not be very different 
from the 41.6% derived from the 1961 census. In 
the case of the Waljbiri T have age estimates for 
the Yuendumu population (Middleton and Francis, 
1976). This gives 43.2% for the 15-44 age cohort. 
From the total Waljbiri population estimate given 
by Mil liken (1976), N for Waljbiri becomes 1,173.

Another difficulty is that Aboriginal popula
tions have been subject to a series of bottleneck 
effects due to the operation of various factors. 
This could cause the loss of a number of private
variants which, in turn, will affect the calcula-

/\ /\ /\

tion of k^, k and K. The loss of these private 
variants, however, will be proportional to the 
decline in population size. On the other hand, 
private variants which survive the population 
crash will increase in number during the subsequent 
population expansion.
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3.2.1.5. The estimation of t .o
Kimura and Ohta (1969) showed that the mean 

survival time for a neutral mutation in generations 
in terms of variance effective population size 
(N v) and actual population size N is given by

N vA = 2 TT- loM 2N(
in a stat ionary non-subdivided population with no 
reproductive death and the progeny size following 
a Poisson distribution. Kimura and Maruyama 
(1971), however, argue that if the population is 
subdivided into loose random mating units between 
which migration occurs, it may be treated approxi
mately as a single random mating unit, disregarding 
the substructure of the populations.

Applying Kimura and Ohta's formula to the 
Aboriginal populations, and using the estimates 
of N given above, I obtain values of t -12.42 
generations for the Waljbiri. Neel and Rothman 
(1978), however, consider the values of t 
calculated by this method as overestimates. The 
mean survival time can be simulated for each 
population, and Li and Neel (1974) and Li et al. 
(1978) obtained values between 2.3 to 2.8 gener
ations. However, after making concessions for 
the various factors influencing the population,
Neel and Rothman (1978) give a mean value of 5.7 
generations. I shall use this value here.
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3.2.1.6. Results.
Mutation rates estimated by each of the three

methods listed above, both for the total Aboriginal
population surveyed and for the Waljbiri tribal
group are given in table 3.4. The rates vary
within a range from 3.58 x 10  ̂ to 12.72 x 10 ^,

6with a mean value of 8.85 x 10 /locus per gener
ation. In obtaining the values of y based on 
Kimura and Ohta (1969) , the mean number of 
variants per locus were obtained for the actual 
population size.

Mutation rates estimated from private 
variants at polymorphic loci are 2-3 times higher 
than those estimated from the monomorphic loci.
This may be a function of the smaller sample 
sizes for the private variants at monomorphic 
loci in our sample, which will have reduced the 
probability of detecting private variants. Eanes 
and Koehn (1978) recently have also drawn attention 
to the relationship between sample size and detection 
of rare electrophoretic variants.

The values of y = 4.07 x 10  ̂ to 5.23 x 10 ^ / 

locus per generation for the Waljbiri are lower 
than the values obtained for the total Aboriginal 
sample. These lower values are due to the fact 
that while five private variants were detected in 
the Waljbiri, only one is included for calculating,
S\ /N / \

k̂ , k and K. The other four are more widely
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TABLE 3.4

MUTATION RATES (xlO6) IN AUSTRALIAN ABORIGINES 

ESTIMATED BY VARIOUS METHODS

Kimura
and

Ohta1s 
Method

Nei ' s 
Method

Rothman 
and 

Adams' 
Method

VJK-0 y NEI UR-A

Polymorphic loci 
Total Aboriginal sample 13.40 5.03 16.63

Monomorphic loci 
Total Aboriginal sample 4.60 2.20 5.71

All locî '
Total Aboriginal s amp1e 10.25 3.58 12.72

Waljbiri sample 4.22 4.07 5.23

-61 Mean = 8.85 x 10



distributed in the Aboriginal population, and it 
is not possible to assign the original mutants to 
the Waljbiri.

Neel and Rothman (1978) estimated mean mutation
rates based on values for 12 Amerindian tribes in
South America by each of the same three methods.
The unweighted mean for the 12 tribes averaged

6for the three methods is 16 x 10 /locus per 
generation. The mean value for the Amerindians 
is almost twice our value for the total Aboriginal 
sample. However, Neel and Rothman’s value of 
16 x 10  ̂ is based on unweighted means for the 
tribal samples. If it is recalculated using 
weights based on the effective population sizes, 
the weighted mean value becomes 7.2 x 10 /locus 
per generation. It is interesting to note that 
recently Neel and Thompson (1978), using a method 
based on simulation, arrived at a mean mutation 
rate of 7.0 x 10 ^/locus per generation. These 
values are very similar to our own based on the 
total Aboriginal sample. The value for the 
Waljbiri, of course, is only half that for the total 
Aboriginal sample. Neel and Rothman found a 
range of values of 0-51 x 10 ^/locus per 
generation for their 12 Amerindian tribes. The 
Waljbiri, therefore, fall within this range and 
we assume that, if data were available for a 
similar number of tribal populations in Australia,



the range of values may also be similar to those 
for the Amerindians.

Although the indirect estimation of mutation 
rates using data on private electrophoretic 
variants has many problems, ranging from the 
technical factors influencing the recognition of 
rare variants, through sampling design to the

A A A

estimation of k , k , K and N, it is of great 
interest that data collected in two different 
laboratories from studies of different populations 
on two continents have yielded estimates of y 
which are so similar.

5.2.2. Mutation rates in Papua New Guinean 

populations.
3. 2. 2.1. The study population.

Papua New Guinea comprises the portion of the 
island of New Guinea east of longitude 141°E 
together with several geographically related 
islands, including New Britain, the Admiralty 
Islands and Bougainville. The census size of 
Papua New Guinea is approximately three million, 
or about 67 per cent of the estimated total 
Melanesian population, and its population is one 
of the linguistically most complex and socially 
fragmented areas of the world. It is estimated 
that there are about 700 speech communities in 
Papua New Guinea divided among two major linguistic



phyla, Papuan and Austronesian (Wurm, 1975a). A 
survey of the patterns of social structure is 
given in the Encyclopaedia of Papua New Guinea 
(Lepervenche , 197 2).

The distribution of population densities in
Papua New Guinea is highly uneven. The highland
region is one of the most densely populated areas

2in Papua New Guinea (14 persons/km against 4.7 
2persons/km in the country as a whole) and in

some regions the density ranges from 100-150 
2persons/km (Brown and Podolefsky, 1976). 

Approximately 40% of the total population lives 
in the Highlands and another 17% on offshore 
islands. Watson (1965a, b) attributes this
high level of density in the highlands to the 
introduction and cultivation of sweet potato about 
three centuries ago, which resulted in explosive 
population growth. Some researchers do not agree 
with this explosion theory of population growth 
(Brookfield and White, 1968), yet the projected 
population of Papua New Guinea in the 17th century 
could not have been more than 225,000 (van de Kaa , 
1971-72).

This population size of 225,000 should be 
the equilibrium population of Papua New Guinea 
at the hunt er - gatherer level before the intro
duction of agriculture which, over a span of 12 
generations, increased in population size about
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tenfold. The age and sex composition of the 
population could, however, have been much different 
in the past from what it is now. The sex ratio 
in Papua New Guinea was 1,088 males per 1,000 
females in 1966 (van de Kaa, 1971-72) with about 
44.6% in the age group 15-44 years and the incidence 
of polygyny was about 10.0%. But the sex ratio in 
the 1971 census was less than unity (Administration 
of Papua New Guinea, 1972) with about 49% in the 
age group 15-44 years. ' These wide fluctuations 
in demographic features may, however, be associated 
with the recent population increase.

The present analysis is based on samples 
collected from populations belonging to 47 
languages, also called speech communities, on the 
mainland of Papua New Guinea, together with two 
speech communities from Karkar Island and five 
from Siassi Islands, both off the northern shore 
of New Guinea and one speech community, Titan, 
from the Great Admiralty Island, also called 
Manus. The populations of these offshore islands, 
namely Karkar, Manus and Siassi, although having 
evolved in a similar ecological setting, have 
been exposed to different types of population 
pressures. These societies, like the coastal 
regions of mainland Papua New Guinea, have been 
at the crossroads of migrations, in and around 
the Pacific, and may well have had their genetic
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composition considerably altered through repeated 
contact with outsiders. The populations of these 
three islands have been analyzed separately also 
for respective mutation rates.

The 55 speech communities included in the 
present study are listed in table 3.5, along with 
their estimated population size. A map depicting 
the position of various units is given in Figure 3.2.

3.2.2.2. The laboratory data.
The data analyzed here include only the 

published and unpublished genetic surveys 
conducted by the members of the Department of Human 
Biology in collaboration with other workers.
Material in all cases was shipped by air to 
Canberra and laboratory testing carried out in 
our laboratories using standard procedures outlined 
in Blake et al. (1973). The variants of a few
other systems were tested using the techniques 
as follows: GPT (Chen et al. , 1972), EsD
(Hopkinson et al. 1973), CA-̂  and (Hopkinson
et aZ.,1974), GLO (Kompf et a7., 1975), PGM^ and 
PGM^ (Blake and Omoto, 1975). The list of 
enzymes studied, along with their sample size and 
subunit molecular weights, are given in table 3.6.

Seven of the 21 loci included in the study 
are polymorphic and six of the 21 are invariant.
Out of the 53 alleles segregating 24 alleles are

3rare as a whole. Two other alleles, namely PGM
1
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TABLE 3.5 SPEECH COMMUNITIES SAMPLED IN PAPUA, NEW GUINEA

ADMINISTRATIVE
DISTRICT

*

LANGUAGE
FAMILY LANGUAGE

ESTIMATED 
SIZE OF 
SPEECH 

COMMUNITY

REFERENCE

Central Group II A Mo tu 13,000 Taylor, 1970.
Mailuan NA Mailu 4,662 Dutton, 1971

Goilalan NA Fuyuge 9,615 Steinkraus and 
Pence, 1964

Milne Bay Dag an NA Daga 5,326 Dutton, 1971

Eastern Highlands Eastern NA Gadsup 9,100 Gajdusek and 
Alpers, 1972

Asaro 12,000 -ditto-
Benabena 12,300 -ditto-
Fore 15,100 -ditto-
Agarabi 11,000 Wurm, 1975b

Chimbu Central NA Kuman (Chimbu) 66,000 -ditto-
Western Highlands w. Central NA Enga 150,000 -ditto-
Morobe Angan NA Menyama Anga* 12,400 -ditto-

Wantoat NA Wantoat 5,000 Classen and 
McElhanon, 1970

Irumu
**

Waritsian

1,800
500

-ditto-
Department of 
Chief Minister 
and Development 
Admin. 1970-74

Morobe (Siassi Is.]) Siassi A Barim 325 -ditto-
Tuam Mutu 3,330 -ditto-
Lukep 627 -ditto-
Mangap 2,635 -ditto-

Kovai NA Kovai 2,108 -ditto-
Manus (Manus Is.) Manus A Titan 2,550 Healey, 1975
Madang (Karkar Is. ) Siassi A Takia 10,962 Z'Graggen, 1975a

Kowan NA Waskia 530 Z'Graggen, 1975b
Madang Yupna NA Eandabong 9,106 McElhanon, 1975

Nokopo 1,690 -ditto-
Kewieng 940 -ditto-

Madang Kokon NA Bernal 642 Z'Graggen, 1975b
Munit 345 -ditto-

Amaimon NA Amaimon 701 -ditto-

Kalam NA Gants 1 ,900 Wurm, 1975b

Gum NA Sihan 314 Z'Graggen, 1975b



TABLE 3.5 Cont'd

ADMINISTRATIVE
DISTRICT

*
LANGUAGE
FAMILY LANGUAGE

ESTIMATED 
SIZE OF 
SPEECH 
COMMUNITY

REFERENCE

Madang cont'd Belan A Ham 1,495 Z'Graggen, 1975a
Meseman A Man am 5,950 -ditto-

Sepa 268 -ditto-
Kaukombaran NA Pay 769 Z'Graggen, 1975b

Pila 669 -ditto-
Saki 2,403 -ditto-
Tani 2,494 -ditto-

Miseigan NA Mikarew 5,872 Laycock and
Z'Graggen, 1975

Sepen 428 -ditto-
Giri 1,819 -ditto-

Ataitan NA Tangu 2,684 -ditto-
Monumbo NA Mon umbo 450 Laycock, 1975

Lilau 410 -ditto-
Wadaginam NA Wadaginam 546 Z'Graggen, 1975b
Pomoikan NA Moresada 197 -ditto-

E. Sepik Ndu NA latmul 9,842 Laycock, 1975
Sepik Hill NA Alamblak 1,107 -ditto-

Kapriman 1,439 -ditto-
Sumariup 65 -ditto-

Pondo NA Karawari 1,300 -ditto-
Gulf Purari NA Purari 6,500 Wurm, 1975b
W. Sepik Ok NA Tifal 2,500 Voorhoove, 1975
Western Ok NA Kauwal 500 -ditto-
Southern Highlands Bosavi NA Onabasulu 300 -ditto-

Total 416,215

A, Austronesian; NA, Non-Austronesian or Papuan.
* *

A genetic isolate
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Fig. 3.2 Map of Papua New Guinea showing
boundaries of administrative areas 
and island populations included in 
the present investigation.
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9and P G M although polymorphic, are here considered 
to be of New Guinea origin. This raises the number 
of variants to 26. The names of these variants, 
along with their frequencies are given in table 3.7.

Four of these 26 variant alleles, namely 
Hb JTongariklJ GOT^, CPT3 and £PT6 cannot be 
assigned with certainty to Papua New Guinea 
because of their presence in appreciable numbers 
in other western Pacific populations which, as is 
true for the Japanese during World War II, have 
had contact with Papua New Guinea in the past.
The introduction of these variants to Papua 
New Guinea, through admixture, therefore, cannot 
be excluded. Thus we have 22 alleles at 21 loci 
which can be regarded as indigenous to Papua New 
Guinea.

In Karkar Island we detected 10 of the 26 
allelic variants listed in table 3.7 over a set 
of 18 enzyme loci. Only two of these, namely 
LPPkk3 and LPPkk3 are unique to Karkar and are 
represented by single copies only. Seven of 
the other eight variants are mainland markers 
also; the only exception is Hb j^ongariki^

polymorphic in Karkar but rare on the mainland.
This last allele also has wide distribution 
in other parts of Melanesia.

No private variant was detected at 14 red 
cell enzyme loci tested in Manus. The absence of
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3 7Southwest Pacific genetic markers like PGM^3 PGM^3 
PGM923 PGm ]°3 PSP2, PGK^ and Pb jTongariki^ makes

this population unique in the western Pacific area.
In a set of 17 loci, two unique variants were

2 3found in Siassi Islands. These are PHI and PGM
with a single copy each. The population of Siassi
Islands, however, has a fair proportion of markers
distributed in the western Pacific region. Except

3for a very low frequency of PGM^, four other variants 
namely, PGK2, PGK^ 3 PGK2,° and Hb jlongarikl are in 
polymorphic proportions in these islands.

3.2.2.3. Estimation of k,, k and K.t r
Three different estimates for the mean number 

of variants/locus were calculated. For the 21 loci 
included in the present study, 22 unique (20 rare and 
2 polymorphic) variants were detected which give 
values of k , k and K as 1.05, 0.95 and 2.10 
respectively. The two parameters of geometric 
distribution involved in the estimation of K, namely 
b and c (b=0.5567; c=0.3865) (Rothman and Adams,
1978) have been estimated from the data for Kiunga 
in the Western Province given by Serjeantson (1975).

These estimates, however, are underestimates 
if the role of various factors affecting the 
incidence and detection of rare variants is consid
ered (table 3.8). For example, the minimum sample 
size for loci with variants is 4,441. Three of
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TABLE 3.8 MEAN SAMPLE SIZES, SUBUNIT MOLECULAR WEIGHTS 
AND HETEROZYGOSITIES FOR PROTEIN LOCI 

WITH AND WITHOUT PRIVATE VARIANTS

TYPE OF 
LOCI

TYPE OF 
ENZYME

NUMBER
OF
LOCI

TOTAL
NUMBER
OF

ALLELES

TOTAL
NUMBER

OF
PRIVATE
ALLELES

MEAN
SAMPLE
SIZE

MEAN
SUBUNIT
MOLECULAR
WEIGHT

MEAN
HETEROZY
GOSITY
(1-Exj>

With Multimers 6 22 14 7,295 41,167 0.0538

Private Monomers 4 13 8 ■ 7,122 54,000 0.1021

Alleles Total 10 35 22 7,226 46,300 0.0731

Without Multimers 7 13 - 5,402 30,714 0.0705

Private Monomers 4 5 - 4,172 23,750 0.0864

Alleles Total 11 18 - 4,955 28,182 0.0763

TOTAL Multimers 13 35 14 6,276 35,538 0.0628

Monomers 8 18 8 5,647 38,875 0.0942

Total 21 53 22 6,036 36,809 0.0748
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the invariant loci, namely, GLO, CA^ and CA^ have 
sample sizes more than 3 S.D.'s below mean sample 
size and 2 S.D.'s below the lower limit of 4,441. 
Clearly the small sample sizes at these loci may
have affected the detection of rare variants.

/\After excluding these loci, the values of k , kr 
and K are increased by 16.671.

Considering the islands separately, the 
estimates of k. , k and K are 0.11, 0.11 and 
0.20 respectively for Karkar Island. The 
respective values for Siassi Islands are 0.12, 0.12 
and 0.26 and zero for Manus Island..

Since the calculation of K depends a priori 
on the observed distribution of copies of rare 
alleles, g(i), and the ratio (f) of sample (n) 
to effective population size (N), these estimates 
are inflated by 1.79 and 2.26 times in Karkar and 
Siassi Islands respectively when compared with 
the observed value of k̂ . This increase is com
parable with a similar increase for the estimate 
of the total sample.

3.2.2.4. Estimation of actual (apparent) and 
variable effective population sizes.

In the absence of historical records, it is 
difficult to estimate accurately the actual 
population size (N) of linguistic groups in Papua 
New Guinea. However, since the estimates of 
mutation rate are highly dependent on the estimate



of N, this is discussed in some detail. The Papua 
New Guinea Bureau of Statistics Census of 1971 
reported a total population of 2,435,409 indigenous 
persons of whom 41.6% were in the reproductive age 
group of 15-44 years, with a similar proportion 
(41.5%) ever married. With a minimum of 700 
documented language groups (Wurm, 1975a), the 
maximum estimate of language group effective size 
is 1,447.

This maximum value of N may be considered a 
gross overestimate of population size during past 
generations. Post-Second World War availability 
of medical care has had a profound impact on 
mortality, especially that in infants, such that 
annual population growth currently exceeds 2.3%
(van de Kaa, 1971-72). The Census of 1950 
(Annual report, 1951) enumerated the total popula
tion of Papua New Guinea as 1,440,000, less than 
60% of the number observed one generation later. 
Prior to 1950, many language groups, including 
those in the Highlands, had hardly been exposed 
to administrative contact and had not been 
enumerated. Only a few groups, mostly coastal, 
had been censused before the Second World War.
One such coastal group, included in our sample, 
is that of Karkar Island. The Island's popula
tion increased from 7,300 in 1925 to 9,100 in 
1937-9, to 20,068 in 1974 (van de Kaa, 1971-72;



Z'Graggen, 1975a, b) . However, such population 
growth prior to 1939 is exceptional and the 
corresponding figures for Manus and surrounding 
islands are 12,900 in 1925, 12,800 in 1937-9 and 
24,000 in 1971. Van de Kaa (1971-72) considers 
that the Papua New Guinea population was stable 
between 1890 and 1939, partly because there is no 
evidence to suggest otherwise, but mainly because 
analysis of the few surveys undertaken at that 
time show little demographic change.

In the calculations it is assumed that the 
actual population size during the last five to ten 
generations more closely approximates the census 
figures of 1939 - than of 1971, and that the 
population of 1939 was very close to 501 of that 
enumerated in 1971.

In Papua New Guinea, estimates of N of language 
groups also require correction for the extreme 
variability in language group size. Linguistic 
groups may comprise less than 100 persons, as in 
Gorovu in the Ramu Phylum (Z'Graggen, 1971) or 
more than 150,000 persons as in Enga in the 
Western Highlands (Wurm, 1975b). By far the 
majority of language groups have less than 5,000 
speakers. For instance, of the 92 languages 
documented by Z'Graggen (1971) in the Madang 
Province, only 51 are spoken by more than 5,000 
persons and 68% of languages have less than 1,000



speakers. Since the average value of N more 
closely approximates the harmonic than the simple 
mean of language group size, the three main 
linguistic Phyla represented in the Madang Province 
and analyzed to estimate the ratios of the 
harmonic means (H) to simple means (N). For the 
Adelbert Range Phylum, H/N is 35%, for the Ramu 
Phylum 33% and for the Madang Phylum, 40%. The 
combined value for 80 languages is 36%.

Therefore, for estimation of the mean number 
of speakers per language, 50% of 2,435,409 
individuals is taken as the total population 
prior to 1939, distributed amongst 700 languages 
of varying sizes, with an average of 1,740 
speakers. Since the harmonic mean of language 
group size is 36% of the simple mean, the more 
appropriate estimate is 626 speakers per language 
when correction is made for variability in 
language group size.

The estimation of variance effective 
population size (Nev) is further modified by the 
proportion in the reproductive age groups, 
variability in fertility and deviation of the sex 
ratio from 1:1. The adult sex ratio was less 
than unity in the 1971 Census and greater than 
unity in the previous Census of 1966 (Territory 
of Papua New Guinea Bureau of Statistics, 1972) 
so we shall assume the sex ratio in the reproduc-



tive age groups fluctuates around 1:1. The propor
tion in reproductive age groups is more difficult 
to estimate accurately, since profound demographic 
changes make presently observed proportions differ
ent from those expected in the past. In 1971,
41.6% of the population was aged between 15 and 
44 years, compared with 45.0% in 1966 (Territory 
of Papua New Guinea Bureau of Statistics, 1972), 
reflecting the reduced mortality in both infants 
and the elderly. The Papuan Annual Reports from 
1919 to 1937 reported children aged less than 
16 years as only 39-40% of the total population 
and Serjeantson (1970) recorded 49% of the popula
tion of two relatively unacculturated PNG language 
groups aged between 16 and 45 years. It is 
reasonable to suggest that the proportion in the 
reproductive age groups in past generations was 
closer to 49%, the estimate I use in my 
calculations, than to the 42% presently observed.

Variation in fertility will modify N'ev if
the index of variability (V, /k ) deviates fromka a
unity (Crow and Morton, 1955), when k and V area Ka
the mean number and variance of surviving offspring. 
In Papua New Guinea, the index of variability is 
inflated by factors such as polygyny which was 
reported by 9$ of married males as recently as 
1971 (Territory of Papua New Guinea Bureau of 
Statistics, 1972). Serjeantson (1970) estimated
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the index of variability as 1.22 in males from the 

Yonggom group with 10% polygyny and 2.09 in males 

from an additional group (Awin) with 28% polygyny. 

The corresponding values in females were 0.96 and 

1.40 in a population with such comparatively low 

fertility (Serjeantson, 1975) that it may well 

reflect the demographic structure of most Papua 

New Guinea groups prior to 1939.

With an average index of variability of 1.4 

and 49% of the population in the reproductive age 

group, the ratio of N v/N is 83.7%. The average 

actual size (N) of language groups in Papua New 

Guinea is estimated as 49% of 626, or 307 persons 

and this is the value used in estimating the mean 

survival time for fresh mutations in Papua New 

Guinea language groups.

The survey of genetic markers encompassed 55 

language groups with a total of 416,215 speakers 

as shown in table 3.5. In general, it is the 

language groups with a relatively large number 

of speakers that have been sampled, so that the 

average effective size of language groups with 

genetic data available exceeds slightly the 

average size of language groups in Papua New 

Guinea as a whole. Making similar adjustments 

as before, for rapid population expansion in 

the last generation, for variation in language 

size, for variation in fertility and for the



proportion in the reproductive age groups, the 
total effective population size for the 55 
languages in this series is 34,450. I use this 
value in all my calculations.

The census sizes of the three island 
populations, namely, Karkar, Manus and Siassi, 
were about 20,068 (Z’Graggen, 1975a, b), 20,000 
(Healey, 1975) and 9,025 (Department of Chief 
Minister and Department of Administration, 1970-74) 
respectively in 1973-74. The respective popula
tions stood at 9,110, 13,839 and 4,715 in 1937-39 
(van de Kaa, 1971-72) with 50.31, 62.7% and 59.5% 
in the adult age groups. After adjusting for 44 
years + populations, the values are approximately 
41.0%, 53.0% and 49.0% giving values of N as 
3,735, 6,805 and 2,310 for Karkar, Manus Island 
and Siassi Islands respectively. The ratio N v/N 
in Karkar and Siassi Islands is 0.907 and 0.912 
respectively.

3.2.2.5. Estimation of t .o

The mean survival time for fresh mutations 
which will ultimately be lost from the population 
(t ) was given by Kimura and Ohta (1969) 
and Nei (1971). This value is estimated for a 
Papua New Guinea language group as:
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tQ = 2 Nev/N 1oge (2N)

= 2 x (0.837) loge (2 x 307)

= 10.74 generations

which is different from the estimate given by Neel 
and Rothman (1978) of 5.70 for Amerindian popula
tions using simulation results. The estimates 
for Karkar Island and Siassi Islands, were 
calculated to be 14.92 and 14.12 generations 
respectively. These estimates are used for 
generating mutation rates by Kimura and Ohta’s 
method.

3.2 . 2.6 . Results.
The estimation of mutation rates has been 

carried out using three indirect methods of Kimura 
and Ohta (1969), Nei (1977) and Rothman and Adams 
(1978). Table 3.9 shows these estimates for the 
total Papua New Guinea population. The three 
estimates of y by the methods of Kimura and Ohta 
(1969), Nei (1977) and Rothman and Adams (1978) 
are 2.83 x 10 ^, 1.44 x 10  ̂ and 6.58 x 10 ^/locus 
per generation respectively with a mean value of 
3.62 x 10 ^/locus per generation. These estimates 
range from approximately 28 to 52% of similar 
estimates obtained for the Australian Aborigines.

The estimates of mutation rate for island 
populations show a wide range. The value of y



TABLE 3.9 MUTATION RATES IN PAPUA NEW GUINEA

. .6p x 10

POPULATION Kimura and Ohta's 
method

Nei' s 
method

Rothman and Adam's 
method

Total 2.83 1.44 6.58

Karkar Island 1.79 2.71 5.77

Manus Island 0.00 0.00 0.00

Siassi Islands 4.07 7.56 12.41



in Manus for a set of 14 protein loci is zero.
The estimates of y for Karkar and Siassi Islands 
are given in table 3.9. The process of estimating 
the total number of variants in the populations 
with limited observations, however, is highly 
unreliable. The estimates of y obtained in these 
islands are, however, comparable to similar 
estimates generated for the Waljbiri tribe in 
Australian Aborigines.

3.2.2.7. Discussion.
The estimates of mutation rates as obtained 

from a set of protein loci are affected seriously 
by a number of factors. Probably the most contro
versial aspect of these indirect estimates is the 
estimation of actual population size (N). This is 
particularly difficult in the Papua New Guinean 
communities which have recently been undergoing 
tremendous demographic changes. The impact of 
recent population expansion can be judged from 
the high proportion of private polymorphisms with 
limited geographical distributions. Out of 26 
variants detected as many as ten have attained 
polymorphic proportions in various Papua New 
Guinean communities, six of them in the highlands, 
one in Karkar and Siassi and three in both high
land and coastal communities. The estimation of 
N from the present census sizes will, in general, 
be inflated and it will be appropriate to approach



the subject using a pre-1939 census size.
The role of sample size and subunit size in 

affecting the detection and introduction of rare 
variants has been stressed by a number of authors; 
for example, Nei et al. (1976a) and Bhatia (1980)
and will be discussed in detail in chapter 4.
The mean sample sizes for loci with and without 
variants are 7,226 and 4,955 respectively. This 
difference emphasizes the need for a sample size 
of at least 3,000 even for a set of loci as 
suggested by Eanes and Koehn (1978), before any 
attempts are made to generate mutation rates. 
Similarly, the mean subunit size for loci with 
these variants is 46,300 daltons compared to 
28,180 for the invariant loci. It is thus 
important to make comparisons of mutation rates 
among populations only with similar mean sample 
sizes and mean subunit sizes.

However, the mean number of rare variants/ 
locus per individual (k /n) is higher in Austra
lian Aborigines (2.46 x 10 )̂ in comparison with 
Papua New Guinean communites (1.74 x 10 ^). Since 
the mean number of electromorphs recovered is a 
logarithmic function of sample size and the 
distribution of electromorphs is skewed further 
with sample size increase, it will be appropriate 
to compute the mean number of rare variants/locus 
per individual only in terms of actual population size
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(N), rather than in terms of sample size (n). The
two estimates for Australian Aborigines and Papua

- 5 - 5New Guineans then become 6.99 x 10 and 3.05 x 10 ,
respectively,a difference of 2.29 times.

Nei and Chakraborty (1976) have shown that the 
mean number of silent alleles, undetectable by 
electrophoresis, which contribute to an electromorph,
is higher in populations with large N p’s than ine
populations in which this is small. On the basis 
of this argument, the proportion of mean numbers 
of silent alleles is likely to be much higher in 
Papua New Guinean communities than in Australian 
Aborigines. Since the mean number of private 
variants/locus (k ) reflects the incidence of 
mutation in a population, the ratio of
N k in these two populations, when adjusted for 
sample sizes, yields a value of 2.66 times more 
silent alleles in Papua New Guineans than 
Australian Aborigines. The results at electro
morph level (not withstanding the differences in 
mutation rate at codon level between the two 
populations) are almost negligible.

Because of these various factors which may 
affect the mean number of private variants per 
locus, the indirect estimates of mutation rate 
will show similar variations. It is not surpris
ing, therefore, that estimates of p generated from 
protein data for Papua New Guinea differ about
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twofold from estimates generated on a similar 
scale for Amerindians by Neel and Rothman (1978) 
and for Australian Aborigines by Bhatia et al. 
(1979). The estimate of y for a group of tribes 
in India, however, is lower by more than an order 
of magnitude compared with these estimates. This 
may be because of a recent population increase in 
India and differences in sample size, in the 
number of loci studied, and in technical methods 
employed in blood collection, none of which have 
been taken into consideration by Chakraborty and 
Roychoudhury (1978) .

3.2.3. Mutation rates in Scheduled Tribes from 
South India.

In the last few years this department has 
screened a number of Scheduled Tribes in South 
India for red cell enzyme and serum protein 
polymorphisms over sets of 12 to 23 loci. The 
populations studied are: Kadars (Saha et al.
1974), Todas, Kurumbas, Irulas and Malayaryans 
(Saha et al. 1976), Kotas (Ghosh et al. 1977 ; 
Ghosh, 1977a, b), Savaras and Jatapus (Rao et al. 
1978), Kolams (Ramesh et al. 1979), Chenchus 
(Ramesh et al. 1980), Raj Gonds, Pardhans, Koyas, 
Konda Reddis, Lambadis and Yerukulas (Blake et al. 
1981), Konda Kammaras, Koyas (second series) 
(Veerraju et al. 1981) and Gadabas (unpublished 
material).
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A number of other laboratories have reported on 

red cell and serum proteins in Andhra Pradesh tribals 
(Bernini et al. 1970; De Jong et al. 1971, 1975; 
Santachiara-Benerecetti et al. 1972a, b; Goud and 
Rao, 1977 , 1980; Papiha et al. 1979; Rao et al. 
1979; Rao and Goud 1979 and Roberts et al. 1980)
In addition comparative results are available for 
the non-tribal populations of south India (see 
Basu, 1978 for a list of references) as well as 
tribal and non-tribal populations from the 
adjoining statesof Maharashtra, Madhya Pradesh 
and Orissa, which fall outside the area defined 
here,and south India. The latter information is 
valuable, however, in designating private variants.

3.2.3.1. The study population.
The 18 tribal populations included in this 

study have been divided into three groups on the 
basis of their geographical proximity and demo
graphic features. Group I comprises nine tribal 
populations from the northern (Adilabad, Warrangal, 
Khammam, Srikakulam, Vishakhapatnam, E. Godavari 
and W. Godavari) districts of Andhra Pradesh; 
these populations have been grouped together 
because of their relatively large population sizes, 
continuous dispersion, positive growth trends in 
the past 100 years and cultural affiliations with 
the Scheduled Tribes of central India. In some



101

cases data from the same, or adjoining, districts 
have been pooled. Group II includes Chenchus, 
Lambadis and Yerukulas from Mahabubnagar and 
Kurnool Districts in southern Andhra Pradesh. They 
have been grouped together because they were sampled 
for the same districts but have a discontinuous 
distribution in restricted pockets over large 
areas with small effective breeding units. Group 
III is constituted by six small tribes, all 
restricted to the Nilgiris and Annamalai Hills of 
Kerala and Tamil Nadu States. The list of tribes 
studied is given in table 3.10 and their geograph
ical position in fig. 3.3.

Only populations screened for at least five 
protein loci have been included in the survey.
Table 3.11 gives the number of persons tested 
for the total 30 red cell and serum protein loci 
screened. Data generated by the use of non- 
e lectrophoretic methods for haemoglobins and 
glucose -6-phosphate dehydrogenase have not been 
uti1ized.

3.2.3.2. The laboratory data.
An allelic variant is considered to be 

'private' if it occurs uniquely in only one popula
tion (Neel, 1978a). In addition, if any variant 
allele has a frequency of less than 1% it is 
considered to be 'rare'. If an electrophoretic 
variant has been reported in populations from a
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TABLE 3.10 ACTUAL POPULATION SIZE (N) IN SCHEDULED TRIBES OF SOUTH INDIA

Serial
number

Scheduled
Tribe

District/State
of

enumeration

Density 
per kir>2 

(D)

Total
census
size

Proportion
in

15-44 yrs 
age group 

U) .

Actual
population

size
(N)

*
GROUP I

1. Savaras Srikakulam^ 8.00 40,228 0.439 9,899
2. Jatapus Srikakulam^ 7.61 38,250 0.461 9,811
3. Kolams Adilabad^ 1.62 8,150 0.402 1,836
4. Koyas Adilabad^ 11.56 58,140 0.408 13,297
5. Raj Gonds Adilabad^- 7.21 36,275 0.400 8,136

6. Pardhans Yeotmal^ 2.42 12,171 0.441 3,003
7. Konda Reddis E. Godavari^ 3.45 17,333 0.407 , 3,954
8. Konda Kammara3 Vishakhapatnam^ 1.12 5,619 0.432 1,360
9. Gadabas Srikakulam^ 1.03 5,201 0.434 1,264

Vishakhapatnam

GROUP II
10. Chenchus Mahabubnagar fi Kurnool^ - 7,984 0.403 3,217
11. Lambadis Kurnool^ - 11,704 0.385 4,511
12. Yerukulas Kurnool^ - 10,650 0.409 4,357

GROUP III
13. Todas Kerala - 930 0.447 416
14. Kurumbas Kerala/Tamil Nadu - 4,073 0.506 2,063
15. Irulas Kerala/Tamil•Nadu - 103,039 0.445 45,972
16. Malayaryans Kerala - 4,194 0.556 2,331
17. Kotas Tamil Nadu - 1,188 0.454 539
18. Radars Kerala/Tamil Nadu - 1,418 0.481 681

The estimates are adjusted to 1921 level.
In Group I, census size is given as the 'size of the neighbourhood'; for explanations 

see text.
Andhra Pradesh 
Maharashtra
E. Godavari, W. Godavari and Warrangal Districts.
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number of localities in the subcontinent (e.g. PHI 

2-1), the corresponding allele has not been 

included in the list of rare variants since its 

presence in any particular population could be due 

to intermixture.

In table 3.12 the private and rare variants 

are indicated in addition to rare variants which 

are found in more than one population. The latter 

include especially Hb$^, L D H ^ a  ̂  ̂ and PGD  ̂ which 

are present at low frequency or are absent in some
3of these tribes. A few others (e.g. PHI ), though 

rare in general, sometimes achieve polymorphic 

frequency in one particular population. All of 

the rare variants in this latter category, of 

course, are excluded from the calculation of 

mutation frequency.

Seven private allelic variants are restricted 

to the populations of this group (table 3.12). Two
Q 3. (J ̂  ^of these assume polymorphic proportions. PGD 

(1.141) in Gadabas (unpublished data) and Hba^°^a ^oia 

(5.00%) in a sample of Koyas from Polavaram Taluk 

in West Godavari District (De Jong et at. 1975).

Only two private allelic variants, both poly

morphic, were detected in group II populations,

PHI^ and PGl^. PHI  ̂ has been included although a 

single copy of PHI  ̂ has been reported previously 

from north India (Blake et al. 1971). It is 

unlikely that its presence in the Chenchus is due

to admixture.
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TABLE 3.11 LIST OF RED CELL ENZYMES, PROTEINS AND SERUM PROTEINS INCLUDED IN THE STUDY
OF SCHEDULED TRIBES OF SOUTH INDIA

Serial
number System Abbrevi

ation
Sample
size

Groups
(n>1000)

Populations
studied*

Red Cell Enzymes
1. Acid phosphatase-1 ACPi 3,619 I, II 1-18
2 . Adenosine deaminase ADA 60 - 1
3. Adenylate kinase-1 AK 3,824 I, II 1-7, 9-18
4. Carbonic anhydrase-1 « 1 394 - 9,10,12
5. Carbonic anhydrase-2 c a2 1,021 - 3,9,10,12,17
6. Esterase D EsD 2,023 I 3,4,8-10,12,17
7. Glucose-6-phosphate G-6-PD 213 - 18

dehydrogenase
8. Glutamic oxaloacetic acid GOT 359 - 1-3

transaminase
9. Glyoxalase-1 GLO^ 756 - 4,8,17
10. Isocitrate dehydrogenase ICD 1,497 II 3,10,12-18
11. Lactate dehydrogenase-A ldha 3,575 I,II 1-18
12. Lactate dehydrogenase-B ldhb 3,575 I,II 1-18
13. Malate dehydrogenase-2 md h2 3,646 I,II 1-18
14. Nucleoside phosphorylase Np 580 - 3,13-16,18
15. Peptidase A Pep A 1,012 - 1-3,13-16,18
16. Peptidase B Pep B 1,012 - 1-3,13-16,18
17. Peptidase D Pep D 693 - 1-3,13-16
18 Phosphogluconate dehydro- PGD 3,610 I, II 1-18
19. Phos^Roglycerate kinase PGK 2,804 I,II 1-3,9,10,12-18
20. Phosphoglucomutase-1 PGM^ 4,014 I,II 1-18
21. Phosphoglucomutase-2 PGM 2 4,022 I,II 1-18
22. Phosphohexose isomerase PHI 3,644 I,II 1-18
23. Superoxide dismutase SOD A 3,644 I,II 1-18

Red Cell Proteins
24. Hemoglobin-a Hb-a 4,159 I,II 1-18
25. Hemoglobib-3 Hb-6 4,159 I,II 1-18

Serum Proteins
26. Albumin Alb 1,829 - 4-6,10,11,13-16,
27. Caeruloplasmin Cp 2,208 II 4-6,11,13-18
28 Group specific component Gc 1,006 - 4-6,11,14,15
29. Haptoglobin HP 2,477 II 4-6,10,11,13-18
30. Transferrin Tf 2,374 II 4-6,10,11,13-18

The serial numbers of the populations are given in Table I
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TABLE 3.12 RARE VARIANTS AND PRIVATE POLYMORPHISMS IN SCHEDULED TRIBES OF SOUTH INDIA

Population
Single 
10CU3 
determi
nations '

Allelic variants (percent frequency) References 
(See notes)

Group I
Savaras 2,150 Hb8S (0.76) 13
Jatapus 2,664 HbBS (0.64) , PHI3 (0.65) 13
Kolams 3,818 PHI2 (0.23) , PGM2 (0.47) 12
Koyas 7,897 HbaKOya D°ra (0.99)*, Hba*3^ 3 (0.05)*, PHI2 (0.19), 

PHI3 (1.36), AlbK°ya 001:3 (0.09)*, Tf° Chi (2.92) , 
PGM^ (0.11)*, PGM6 (0.11)

1-4,8,14,15,
18-20

Raj Gonds 3,559 PHI3 (0.37), PGDC (0.75), Tf° ÜOnd(0.70)*, TfU ^hl 
(1.04)

2,8,14,15

Pardhans 1,952 - 2,8,14,15
Konda Reddis 1,657 ACPG (0.55) 2-4,18-19
Konda Kammaras 1,429 PHI2 (0.45) , PGDC (0.93) 20
Gadabas 13,035 PHI6 (0.45)*, PGDGad3ba (1.14*), PGM7 (0.10) Unpublished

Group II
Chenchus 3,521 Hb63 (0.26), PHI2 (0.25), PHI5 (2.71)*, LPH^31"1 

(1.48), Tf° (0.35), PGM7 (0.25)
11

Lambadis 1,674 Tf° Chi (0.32) 2,8,14,15
Yerukulas 569 PGM7 (7.69), PGM^° (1.25)* 2

Group III
Tod as 2,303 Hb83 (0.51), PGDC (0.51), LDH7’°da (0.51)* ---^ , , --- ---A 10,17
Kurumbas 1,049 LDH (3.49) 9,10,17
Irulas 3,765 LDH^al-1 (0.29) 9,10,17
Malayaryans 1,280 PGM6 (7.63)* 17
Kotas 10,816 - 5-7

Kadars 4,671 Hb8S (0.47), LDHGal~3 (1.64), PGD^ (4.24) 17
ACP° (0.48), PGM^k (2.11)*, Pep BK (0.23)

*
Private (rare/polymorphic) allele.

Notes: 1. Bernini et al • (1970) : 2. Blake et at- (1981); 3. De Jong et at- (1971);

4. De Jong et al ■ (1975) ; 5. Ghosh (1977a); 6. Ghosh (1977b): 7. Ghosh et al•

(1977); 8. Gcud and Rao (1977) ; 9. Kirk et al■ (1963); 10. Kirk et al- (1962);

11. Ramesh er at- (1980) : 12. Ramesh et al- (1979); 13. Rao et al- (1978);

14. Rao and Goud (1979); 15. Rao et al. (1979); 16. Saha et al. (1974);

1.7. Saha et at- (1976) ; 18. Santachiara-Benerecetti et at- (1972a); 19. Santa-
chiara-Benerecetti et al • (1972b); 20. Veerraju et at* (1981).



A number of private (rare as well as polymorphic) 
variants have been observed in three of the six 
tribal populations in this group. The private poly
morphisms are P G M ^ , PGD^aĉ ar and PGM  ̂^a  ̂, the former 
two in Kadars and the latter in Malayaryans, and 
two rare variants PEP B  ̂ in Kadars and LZ)//̂ °̂ a in 
Todas.

3.2.3.3. Estimation of k , k and K.t r
Tables 3.13 and 3.14 show the various estimates 

of the mean number of variants/per locus, observed 
in the sample (£ and £ ) and estimated from the 
sample number of alleles for the total population 
of alleles. g(j),were obtained from the observed 
distribution of copies of various rare variants
in the pooled data. The estimates of b and c 
obtained from the results of the demogenetic 
survey of Kota by Ghosh (1976) were utilized in 
computing P .̂  by the equation:

A

b j-1
Pq = j b (1-— ) (3.2)
J 1-c

It may be noticed that no values are obtained for 
Sava ras, Jatapus, Kolams, Pardhans, Konda Reddis,
Konda Kammaras, Lambadis, Kurumbas, Irulas and 
Kotas. In addition, no estimate of k was obtained 
for Chenchus, Yerukulas and Malayaryans (table 3.13).
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TABLE 3.13 SUMMARY OF VARIOUS GENETIC PARAMETERS AND
FROM SOUTH

SAMPLE SIZE IN 18 SCHEDULED TRIBES 
INDIA

Serial
number Population

Number
of

cistrons

Mean per locus 
determinations 

(n.)

Private
rare

variants

_ # * Variants/locus
to kc K

★
Group I

1. Savaras 18 179.44 4- 6.31 0(0) 16.205 - - -
2. Jatapus 17 156.71 + 0.19 0(0) 16.202 - - -
3 . Kolams 21 181.61 4- 10.21 0(0) 13.446 - - -

4. Koyas 19 415.63 4- 57.75 4(4) 16.689 0.2105 0.210*5 0.7854
5. Raj Gond3 17 209.75 + 25.65 1(1) 15.884 0.0588 0.0588 0.2446
6. Paxdhans 17 114.82 4- 9.98 0(0) 14.251 - - -
7. Konda Reddis 12 138.08 4* 24.12 0(0) 14.702 - - -
8. Konda Kammaras 13 109.92 4- 0.08 0(0) 12.954 - - -
9. Gadabas 16 814.69 4- 86.13 2(1) 12.834 0.1250 0.0625 0.1448

AVERAGE

Group II 
Chenchus 20 176.05 + 6.84 1(0) 14.364 0.0500 - 0.1378
Lamba dis 17 98.47 + 14.11 0(0) 14.918 - - -
Yerukulas 17 33.47 + 2.42 1(0) 14.861 0.588 - 0.4541

Group III
13. Tod as 22 104.68 + 5.26 1(1) 8.741 0.0455 0.0455 0.0688
14. Kurumbas 23 45.61 2.81 0(0) 10.823 - - -
15. Irulas 23 163.70 + 8.26 0(0) 14.858 - - -
16. Malayaryans 22 58.18 + 0.52 1 (0) 10.981 0.0455 - 0.1926
17. Kotas 20 540.80 + 6.93 0(0) 9.078 - - -
18. Kadars 22 212.32 0.36 3(1) 9.382 0.1364 0.0455 0.1941

AVERAGE

Actual population size adjusted to 1921 census numbers.

The value of N^v/N is 0.819, 0.819 and 0.650 in Group I, Group II and Group III respectively



3.2.3.4. Estimation of actual population size (N) 
and variance effective population size 
(Nev).

The actual (apparent) population size N, 
(effective population size in Nei's (1977) and 
Bhatia et al. (1979) 's terminology) is an import
ant parameter and is normally equated to the number 
of breeding individuals given as the proportion of 
the population in the age group 15-44 years. In 
populations with cyclic changes in population size 
over the past few generations, Wright (1931) has 
recommended the use of harmonic mean.

To accommodate the role of the isolation by 
distance in the large, continuously dispersed 
populations of group I, the value of N is 
estimated as the ’size of neighbourhood', follow
ing Wright (1946), as

N = 4tto2DA 

2where o is the variance of migrational distances,
D is the population density and A the proportion
of the reproductive age group (15-44 years) in
the population. Pingle (1975)’s data yield the
variance of marital distance in Adilabad tribes

2to be approximately 400 km . Majumdar (1977) has, 
however, given much smaller values for marital 
distances for the Andhra populations as a whole.
The individual values of D and A estimated from
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age and sex tables of the Andhra tribes (Census of 
India, 1971) are shown in table 3.10.

The effective breeding unit in the discontin- 
uously distributed populations of group II is taken 
to be the administrative district where the samples 
have been collected.(table 3.10). Total census 
sizes have been utilized in group III populations 
for estimating N.

Except Chenchus, who have increased marginally 
over their 1911 numbers, the populations of groups I 
and II have been adjusted for population increase 
since 1881. Taking 1921 census as the base level, 
which is quite close to the harmonic mean size since 
1881, I calculate the new estimates of N to be 
0.560 of their 1971 numbers. No such adjustment is 
necessary for group III tribes, which have only 
recently built up their original numbers to 1881 
levels after a decline in the early decades of 
this century.

The value of the variance effective number 
N v, is given (Crow and Morton, 1955; Crow and 
Kimura, 1972) as

N'ev = 2N/[(l-F) + (l + F)Vk/k]

where F is a measure of departure from Hardy 
Weinberg proportions, taken formally equivalent 
to the inbreeding coefficient and k and are 
mean and variance respectively of the progeny size
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surviving to adulthood. V^/k also defines the index

of variability. At birth and adulthood the mean

and variance will be defined by k, and V, ,, k and7 b kb ’ a
V^a respectively.

Murty and Ramesh (1979) and Ghosh (1970) have 

provided the estimates of k^ and for post

reproductive age women and also the index of 

mortality I (Crow, 1958) , for Adilabad tribes 

and Kotas respectively. The index of variability 

at adulthood (V^a/ka) is recalculated using the 

formulae

1/(1+I )v nr

V
and ka V

1 + P [ kb
S k.

1 ]

where ?s is the probability of survival to adult

hood and the subscripts a and b refer to the values 

at adulthood and at birth respectively. The 

estimated values of this index in Adilabad tribes 

and Kotas is 1.43 and 1.95 respectively. Basu's 

(1972) data yield a value of 2.03 for Kotas. The 

high value in Kotas is attributed to a large pro

portion of nulliparous women in the 45 + years age 

group. Similar demographic trends are seen in 

Irulas (Basu 1967). Since no published results are 

available on progeny size for men and women 

separately, adjustments for variation due to 

polygamy are not made in these calculations.
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The value of F obtained from pedigree data on
Andhra tribes and Kotas is 0.030 (Veerraju, 1978)
and 0.040 (Ghosh, 1972; 1976) respectively.
Inserting these values of F and the respective
estimates of V, /k in the equation, N v/N becomes K a a e
0. 819 and 0.650 in Adnhra tribes and Kotas respect
ively. The former value is used for computing t
in individual populations of groups I and II, and 
the latter for the populations of group III.

3.2.3.5. Estimation of t .o
Another important parameter used in estimating '

mutation rates by Kimura and Ohta’s method is the
expected number of generations a mutant survives
prior to extinction t . The values of t for t o o
various tribes are shown in table 3.12. For 
estimating mutation rate in combined tribes, group
1, II and 111, the mean value of t is computed over 
nine, three and six tribes respectively. For the 
total population, the average of t values over 18 
tribes is used. These values of t are given in 
table 3.14.

3.2 . 3.6. Results.
The results on the indirect estimation of 

mutation rate obtained at three levels of population 
organisation, i.e. at individual population, 
individual group and all tribes level are presented 
in tables 3.15 and 3.16. The estimators used are pK ~ U
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TABLE 3.15 ESTIMATES OF MUTATION RATE IN 18
SCHEDULED TRIBES OF SOUTH INDIA

. .6U X lu

^K-0 uNEI yR-A

1.

Group I 

Savaras . .

2. Jatapus - - -
3. Kolams - - -
4. Key as 1.7’ 1.8 7.3
5, Raj Gonds 0.9' 1.2 3.7
6. Pardbans - - -
7. Konda Redd.is - - -
8. Konda Kammaras - - -
9. Gadabas 4.4 4.4 14.1

Average Ö.7 0.8 2.8

10.
Group II 

Chenehus 1.4 — 5.3
11. Lambadis - - -
12. Yerukulas 3.5 * * 12.9

Average 1.6 - 6. O'

13.
Group III 
Tod as 9.4 37.0 20.4

14. Kurumbas - - -
15, Irulas - - -
16. Malayaryans 3.7 - 10.2
17. Kotas - - -
18. Kadars 15.1 11.5. 35,3

Average 4.7 8.0 10.3

Overall Average 2.2 3,1 6.0'

•k k No estimate possible for sample size < i/q
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TABLE 3.16 ESTIMATES OF MUTATION RATE IN VARIOUS 

GROUPS OF SCHEDULED TRIBES OF 

SOUTH INDIA

y X 106

•'k-O yNEI ^R-A

ALL LOCI

Group I 0.657 0.351 2.410

Group II 1.171 0.568 4.273

Group III 0.877 0.310 2.315

AVERAGE 0.902 0.410 2.999

LOCI WITH n>1000 TESTS

Group I 0.718 0.442 2.633

Group III 0.966 0.361 2.550

AVERAGE 0.842 0.401 2.592

TOTAL POOLED DATA

ALL LOCI 0.734 0.264 2.438

LOCI WITH n>l,000 0.844 0.325 2.804
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/'N /S

h , y^_^ as given by Kimura and Ohta (1969), Nei 
(1977) and Rothman and Adams (1978) respectively.

At individual population level the estimates 
of y show wide variability (table 3.15). Even for 
non-null results the values differ by more than 
an order of magnitude.

The estimates of y in group III populations 
are on an average higher than those obtained for 
groups I and II populations. The unweighted 
average of these 18 individual population estimates 
is 2.26 x 10 ^/locus per generation, 3.12 x 10 
locus per generation, 6.08 x 10 ^/locus per gener
ation by the methods of Kimura and Ohta (1969) ,
Nei (1977) and Rothman and Adams (1978) respecti
vely (table 3.15). These estimates, however, 
entail large standard errors (SE) which may be 
contributed by fluctuations in the estimates of

/N

k,, k and K as also the errors associated with 
the estimation of N.

The estimates of y at individual group 
level, however, do not show much variability.
The unweighted averages of three individual 
group estimates are 0.902 x 10 ^, 0.410 x 10  ̂
and 2.999 x 10 ^/locus per generation by the 
procedures of Kimura and Ohta (1969), Nei (1977)
and Rothman and Adams (1978) respectively (table

*

3.16).
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The pooled data, over all the 18 populations, 
yields much smaller estimates of y. The values

/V ^  /V _  A
of ̂  q , and y{ are 0.734 x 10 /locus
per generation, 0.264 x 10 ^/locus per generation
and 2.438 x 10 ^/locus per generation respectively.

Large standard errors (SE) are associated with
A A A

the estimates of k , and K which are largely due 
to fluctuations in the sample size which affects 
the recovery of rare alleles seriously and the 
variability in the mutation rate over loci on 
account of subunit size (MW) variations. The 
variability in one sample size of loci tested 
for group I is 60-2,589, for group II is 113-1,327 
and for the total pooled data is 60-4,159. Since 
some loci were tested on a relatively small number 
of individuals I have estimated new values of 
y only for those loci which have been tested for 
at least 1,000 individuals. The new estimates 
of ^ _ q for groups 1 and III are 7.15 x 10 ^/locus 
per generation and 0.966 x 10 per locus per
generation with a mean value of 0.842 x 10 ^/locus 
per generation. Similar estimates of and
yR a are shown in table 3.16. These estimates- 
are slightly higher than the earlier estimates 
for groups I and II by the three methods.

The estimates of ŷ -gj and y^_^ for
pooled date over 23 loci (n>l,000) are 0.844 x 10 
locus per generation, 0.325 x 10 ^/locus per gener-
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ation and 2.804 x 10 ^/locus per generation 
respectively (table 3.16). The differences of 
these estimates from those obtained previously 
are only marginal.

3.2.3.7. Discussion.
The indirect estimates of mutation rate 

generated on the Scheduled Tribes from south India 
are clearly outside the range of similar estimates 
when comparisons are made with those obtained at 
similar levels of population organization on 
Amerindians (Neel and Rothman, 1978), Australian 
Aborigines (Bhatia et al. 1979) and Papua New 
Guineans (Bhatia et al. 1981). At individual 
tribe level, the unweighted average of p for tribes 
in India is about one fourth of the unweighted 
average for Amerindians. Similarly, the results 
on the pooled population of all tribes from south 
India are considerably lower than similar estimates 
on the Australian Aborigines and the Papua New 
Guineans. The present results, although based on 
a much wider data base, in fact, confirm the 
apprehensions of Chakraborty and Roychoudhury 
(1978) regarding the use of data on moderately 
acculturated Indian tribes for the estimation of 
mutation rate, although the possibility of 
regional/ethnic differences in mutation rate 
exists (Neel et al. 1980b).
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One of the factors which affect these estimates 

on Indian tribes seriously are the conservative 

procedures employed in designating a private variant. 

In the Indian context, where a large number of 

communities live together in the same area, 

identities between electromorphs suggest common 

descent and fresh mutations are private by default 

only. Considerable under-estimation of this sort 

of data makes the genetic interpretation of these 

results difficult.

Another serious source of error in utilizing 

the indirect procedures is the use of the parameter 

N, the actual size of the population. In contin

uously distributed, large sized population groups, 

the effective size of the breeding unit estimate 

by the methods of Wright (1946) or Bhatia et al. 

(1981), suitability of the approach notwithstanding, 

is only approximate and tends to err on the higher 

side. In the absence of hard data on the historic 

demography of these pre-literate societies, 

analogous dilemmas of a more temporal nature 

are faced. In addition, the extrapolation of the 

current demographic compositions to a time - specific 

constancy is disputable. The much lower estimates 

of y in the Papua New Guineans and the Indian 

tribes may be attributed partly to these over

estimations of the expected harmonic values of N.



The use of electrophoretic data, as analysed 
by the standard methods, clearly defines only a 
subset of total mutational events occurring at a 
given cistron and thus any estimates obtained by 
these approaches must be adjusted for these under
estimations. In addition to about two thirds of 
the aminoacid substitutions which lead to no charge 
change (Shaw, 1965; Nei and Chakraborty, 1973; 
Marshall and Brown, 1975), a large fraction, 
depending upon the distribution/density of the 
population and the relative frequencies of the 
electromorphs, of electrophoretically detectable 
substitutions is lost due to coalescence with 
other electromorphs (Nei and Chakraborty 1976; 
Chakraborty and Nei, 1976; Takahata, 1980). The 
effect of the latter is correlated with the popula
tion size. For presumably similar neutral 
mutation rates over similar sets of protein loci, 
Bhatia et al. (1981) found 2.66 times more silent
alleles in the numerically stronger (and more 
densely distributed) Papua New Guinean communit
ies, than in the thinly spread, small sized group 
of the Australian Aborigines. Because of the 
undefinable nature of these population sizes no 
adjustments have been made on this accord, though 
the present estimates may only be 20 to 40 per 
cent of the real values.
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Another class of mutations omitted in these 
calculations is null mutations. Although the bio
chemical nature of these mutations may range from 
a single aminoacid substituion in a polypeptide to 
a total loss of polypeptide and, in theory, may 
result from mutations either in structural or 
regulatory genes (Neel, 1978a), the ratio of pnu-Q 
to Uv-arjLant is known to range from 2-6fold (Mukai 
and Cockerham, 1977; Voelker et al. 1980a).
Arthur et al. (1975) and Nelson and Harris (1975)
have reported more than 12 fold more null mutations 
in experiments on mutagenised human cultured cells. 
Since it is now possible to distinguish between 
structural and regulatory mutations (Siciliano et al. 
1978) the proportion of null mutations at structural 
loci can be estimated. Although we do not introduce 
any correction for this factor here, it may be noted 
that such adjustments will raise the estimates 
considerably, especially on large sized populations.

The procedures for calculating indirect 
estimates of y from protein data have now been 
extended to non-human species by McCommas and 
Chakraborty (1980) . In Bunodosoma cavernata they 
have estimated the y to be 6.3 x 10 to 6.3 x 10 /
locus per generation for population sizes of 10^ to

710 individuals. These results, along with my 
results of Indian and Papua New Guinean populations, 
indicate that very low values of y are generated
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from protein data by using indirect procedures, 
specially if the population sizes are large.

The results on direct estimates of mutation 
rates from protein data on Drosophila and man are 
now available. Mukai and Cockerham (1977) and 
Voelker et al. (1980b) reported the frequency of 
band morph mutations in Drosophila melanogaster 
as 1.81 x 10  ̂ and 1.28 x 10 ^/locus per gener
ation respectively. Dubinin and Altukhov (1979) 
and Neel et al. (1980b) have given these estimates 
in human populations as 6 x 10  ̂ and 0.34 x 10  ̂
locus per generation in Russians and Japanese 
respectively. The results on human populations 
are, however, difficult to evaluate since more 
than 522,119 determinations in English (Harris 
et al. 1974), Amerindians (Neel et al. 1980*1) 
and Japanese (Neel et al. 1980b) have failed to
identify a single confirmed instance of spontaneous 
mutation, although the possibility of detecting 
much common null mutations also exists. If 
anything, these results only indicate that the 
differences in mutation rates between moderately 
acculturated , comparatively large sized, Scheduled 
Tribe groups of south India, and the other non- 
tribal communities, may not be very large. Bhatia 
(1981) lias also indicated that the range of inter- 
populational estimates of relative electromorph 
mutation rates is much lower than the range of
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their effective population sizes, indicating that 

mutability differences among human populations, 

both civilized and primitive, if any, are only 

marginal.

3.2.4. Estimates of mutation rate in h unter-g atherers 

of central and southern Africa.

3. 2.4.1. The study population.

The present section analyzes data from a number 

of sources for several hunter - gatherer populations 

in central and southern Africa. These may be class

ified into two broad groups: Pygmies from the equa

torial forests of central Africa and more hetero

geneous groups of peoples who, with one exception, 

speak "click" or Khoisan languages. The best known 

of the Khoisan-speakers form a morphologically 

distinct group which is referred to as Khoisan and 

this, in turn, may be sub-divided into the Khoikhoi 

and San.

Of all the people extant in Africa, Pygmies 

and Khoisan-speakers have the greatest claim to 

antiquity of residence (Stow, 1905; Vergnes et al. 

1979). Before the permeation of their territory 

by Bantu-speaking Negroids from the north and 

east and Caucasians from the south, Pygmies 

dominated the equatorial Africa while speakers of 

Khoisan languages were spread all across the South 

African subcontinent (Coon, 1965; Iliernaux, 1976).



124

Those who could assimilated into the more settled 
communities, whereas others who chose to retreat 
are still living a lot of their original life-style 
of hunting and gathering in isolated pockets over 
central and southern Africa.

Characterized by short stature and distinct 
economic structure, Pygmies have also retained 
distinct social customs. However, Pygmies have 
lost their original language after contact with 
Negroid farmers (Caval1i-Sforza, 19 72). Although 
the genetic profile of the neighbouring farmers 
has been modified by the assimilation of Pygmy 
genes, Pygmies possess a set of genetic variants 
which distinguish them clearly from the neighbour
ing farmers in terms of gene frequencies and 
private variants (Sahtachiara-Benerecetti et al. 
1980; Vergnes et al. 1979 and Beretta et al.
1977) .

Recently, Jenkins et al. (1978), Nurse et al.
(1978) and Nei and Roychoudhury (1981) have shown 
through genetic distance analyses that the Khoisans 
are distinct from other Negroid groups. In 
addition, Khoisans exhibit a .number of rare 
variants and private polymorphisms of plasma 
proteins (Jenkins and Steinberg, 1966; Steinberg 
et al. 1975), the blood groups and erythrocyte
enzymes (Jenkins, 1974; Jenkins et al. 1971; 1975; 
Jenkins and Nurse 1976; Nurse et al. 1977 and 
Nurse and Jenkins, 1977a) and the tissue antigens
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indicate a considerable Khoisan divergence from 
Negroids. The two distinctive sub-divisions of 

the Khoisan group, namely Khoikhoi and San, are 
known to differ from each other and only in 
minor biological traits (Nurse 1977).

Many of the other Khoisan-speaking groups 
are morphologically similar to Bantu - speaking 
Negroids. Their genetic distinction, however, 
botli from the Khoisan and Bantu-speakers has 
been demonstrated recently by the studies of 
Godber et al. (1976) on Sandawe of Tanzania,
Nurse et al. (1976) and Knusmann and Knusmann
(1969-70) on Dama of Namibia, Nurse and Jenkins 
(1977b) on Kwcngo of Western Caprivizipfel region 
of Namibia and Nurse and Jenkins (1977b) on 
Danisan of the Republic of Botswana.

One additional hunter-gatherer group is 
included in the present analysis, namely the 
Kgalgadi of Botswana. The Kgalgadi are morpho
logically similar to Bantu-speaking Negroids 
and they also speak a Bantu language.

Several workers have documented the fact 
that when hunter-gatherers are brought into 
contact with settled agriculturalists there is 
emigration from the former to the latter, but 
not vice-versa (Cava 11i-Sforza et al. 1969;
Bodmer and Bodmer, 1970; Neyman, 1978). For
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the population geneticist it may be considered that 
the remaining hunter-gatherer isolates are represen
tative of their original gene pools. Assuming that 
these populations retain private variants of long
standing they can provide valuable data for the 
indirect estimation of mutation rates.

3.2.4.2. Estimation of actual (N) and variance 
effective population size (N v).

3. 2.4.2.1. San.
Some 300 years ago, the San people covered the 

whole of Africa south of the Zambezi river, numbering 
about 150-300,000 people (Lee, 1976). The system
atic extermination campaigns organized by Dutch 
colonists (Moodie, 1840-42; Marks, 1972) and sub
jugation by and assimilation with, other ethnic 
groups (Marais, 1939) led to a precipitous decline 
in San numbers. While the eclipse of the Cape San 
was total, Kalahari San gave way to settled agricul
turist and pastoralist communities on the Kalahari 
fringes only to a limited extent. According to Lee 
(1979), there are approximately 40,500 living San, 
of which 88.64% are in Republic of Botswana and 
Namibia. Of the other, about 4,000 live in Angola 
and a few hundred each in Zambia and Zimbabwe.

The estimates of San numbers given by Lee (1979) 
are conservative, albeit more reliable, in compari
son with the numbers enumerated by other workers



(Silberbauer, 1965; Nurse, 1977; O'Callaghan,
1977; Esterman, 1956 and Guerreiro^l968) .
Exclusion of River Basarwa, Kwengo and Danisan, 
whose genetic profile is non-Khoisanoid (Nurse and 
Jenkins, 1977a, b) from Lee's estimates reduces the 
population numbers further to 29,500. Various San 
groups included in the study, along with their 
population numbers are listed in table 3.17.

The microdemographic survey of DobelKung San 
by Howell (1979) reveals 49.56% of the population 
in the age group 15-44 years (A). The simulated 
values of the age composition of DobelKung based on 
their mortality and fertility schedules fit well to
the stable population model "West 5" of Coale and

/\

Demeny (1966) which gives the value of A as 45.82% 
(Howell, 1979). It will be more appropriate to use

/sthis latter value of A, as recommended by Howell 
(1976 , 1979) since the use of a demographic survey 
from a limited region to specify the global demo - 
graphic configuration of the San population is 
unjustified especially when demographic variation 
amongst various San groups is known to exist 
(Silberbauer, 1965; Harpending, 1976; Marshall, 
1976 and Lee, 1979) .

Delineation of the actual breeding group in 
San is, however, difficult. Evidence from genetic 
polymorphisms indicates that gene exchange among 
San does transcend the band and linguistic boundar-
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TABLE 3.17 LINGUISTIC GROUPINGS, APPROXIMATE POPULATION SIZE AND LOCATION OF VARIOUS SAN POPULATIONS

INCLUDED IN THE STUDY (AFTER LEE, 1979)

Language
(cluster/
group)

Population^
size
(approx.)

Distri-2 3 4 5
bution

Study
Group

Location'* 
(Lat. <£. 
Long E )

Reference

A. Tshu-Khwe
1. Hei//om 2,000 c Hei//om 20.5,16.0 Nurse et al., 1977

2. Naron 6,900 b,c Nharo 21.5,21.5 -ditto-

3. /Gw is/'/Gan a 3,000 b G/wi & G//ana 23.0,24.0 Jenkins et a l . ,1975
4. River Basaswa 1,000 b not studied 17.5,22.5 -ditto-

5. Kwengo 2,000 a , b , c ,d Kwengo 17.0,23.5 Nurse and Jenkins , 1977b

6. Danisan 8 ,000 b , e Denasena 20.0,25.5 Nurse and Jenkins, 1977a

Subtotal 22,900

B. Southern San
7. :xo 2,000 b , c (XoS/hua: ,24.0,22.0,

‘25.0,21.5* Nurse and Jenkins, 1977a

a. N/huki - 100 c ,d Glaokx1 ate - -ditto-
9. //Xegwi - d not studied 26.5,30.0 -ditto-

Subtotal 2,100

c. Northern San
10. ! Kung 6,500 a , b, c G !ag!ai 18.5,21.0 Nurse et a l . ,1977

11. /Dau//keisi 3,000 b, c //au//en 21.0,20.5 -ditto-
4,512. Zhu/twasi 6,000 b,c Tsumkwe!Kung 19.5,21.5 -ditto-

Samanlaika(Kung

Subtotal 15,500

Total 40,500

Note : 1. After Lee (1979).
2. See (1) Also a = Angola; b * Botswana; c ■ Namibia; d * Zambia; e
3. After Nurse (1972).

4. Tsumkwe is also called Chum!kwe.
5. Also include DobelKung, /du/da Kung and /ai/ai (or/Xai/Xai) jKung.

Zimbabwe.
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ies (Harpending and Jenkins, 1971; Harpending,
1976 and Nurse and Jenkins, 1977a) although the 
rate of group endogamy is very high (Marshall,
1976; Harpending and Jenkins, 1971).

A group of bands pooling resources during 
the lean periods constitutes effectively an 80% 
endogamous panmictic unit cf Adams and Kasakoff 
(1 975) among the San (Howell, 1979; Marshall, 1976). 
The harmonic mean, of the census size for eight 
such groups given by Harpending (1976) , is ~289

/N

individuals which for X = 0.4582 gives the average
size of the breeding group in San as 132 individuals.

An alternative estimate of N is given by the
panmictic circle approach following Wright (1946)
(for formulation see equation 3.3). Ilarpending
(1976) estimates the variance of matrimonial

2distances in San to be 4142.21km while the popula
tion density (D) of !Kung is obtained to be one 
person for 3.7km“ [15,500 !Kung (Lee, 1979) spread 
over an area of 60,000km^ (Lee, 1976)]. For
A

X = 0.4582, the size of the panmictic circle is 
obtained to be ~6,154 individuals. This estimate 
of N, however, assumes no migration at the periphery 
of the panmictic circle.

Variance effective size (N*ev) is the size of a 
population, with discrete generations and binomial 
sampling of gametes, whose•sampling variance is 
equivalent to the variance associated with gene
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frequency change (Crow and Kimura, 1972). For 

populations with variance in progeny size, this is 

given by Crow and Kimura (1972) as 

2N-(k /2)
N v = ----- ------  (3 . S)
6 1+(Vka/V

where k and Vv are the mean and variance of progeny 

size surviving to adulthood, respectively. For large 

N, the numerator in (3.5) is approximated to 2N.

Data on mean and variance of progeny size at 

birth for !Kung men and women have been provided by 

Harpending (1976) and Howell (1976, 1979). After 

correcting for the phase of survival from birth to 

adulthood, we get an average estimate of the ratio 

N'ev/N as 0.89 8 (see table 3.18) using the equation

N v e
V

2 + P [ s k]2_ - 1 ]

(3.6)

where P is the probability of survival to adult

hood and k, and V, are the mean and variance of b kb
progeny size at birth respectively.

However, the use of progeny data only from men 

and women past their reproductive ages leads to 

under-estimation of V^a/ka , especially if there is 

a certain amount of mortality during the reproductive 

age group. In addition, the choice of probabilty of 

survival (P ) to adulthood only increases the variance
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effective size if the data are obtained from post- 
reproductive age men and women. Howell (1979) has 
given the data on eventual reproductive success of 
all men and women reaching adulthood among !Kung.
The data yield an estimate of N v/N as 0.814 
(table 3.17). Note that the controversy regarding 
?s is also resolved in this approach. I shall use 
this value for estimating t in a later section.

3.2.4.2.2. Khoikhoi.
Khoikhoi, or Nama, as they call themselves, are 

a small population limited in distribution at 
present to Namibia and the deserts just south.
They are a people displaced north from the Cape of 
Good Hope by the advancing tide of Dutch colonists 
and pushed west by the hostile Bantu-speaking groups 
in the east. Unlike Kalahari San the present-day 
Khoikhoi are a mixture of 'Oorlam' clan refugees 
from South Africa and Nama, the original Khoikhoi 
of Namibia.

Numerically and culturally, Khoikhoi are a 
mere shadow of their former selves (Bannister and 
Johnson, 1979). According to O'Callaghan (1977) 
their number in Namibia in 1974 was 37,000. Some 
earlier estimates give the size of Namas ranging 
from 34,806 in 19S9-60 (Wellington, 1967) to 
39,400 in 1966 (Department of Foreign Affairs, RSA, 
1967). No data on the demographic profile of 
Khoikhoi are available and we shall use the



132

TABLE 3.18 MEAN AND VARIANCE OF PROGENY SIZE AMONG

!KUNG MEN AND WOMEN AND ESTIMATION OF

N v/N e

AT AGE 50 AT AGE 15

DobelKung Dobe!Kung
Men Women Women Men Women

1. Mean (k, ) b 5.260 4.520 3.660 4.000 3.860

2. Variance (V, , ) kb 8.930 4.380 5.290 10.360 5.140

3. Probability of
survival to
adulthood (P ) s

0.510 0.530 0.630 0.510 0.530

4. N V/N e 0.849 1.008 0.836 0.710 0.919

Average 
(N v/N)

0.898 0.814
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parameters estimated for the San populations for 
Khoikhoi also. For X = 0.458,the actual population 
size of Khoikhoi was 15,941 individuals in 1959-60.

3.2.4.2.3. Dama.
Dama are a Nama-speaking Negroid people 

living as a reproductive isolate in the north-west 
of Namibia. Although living in the same areas as 
Khoikhoi and San they seem to have received 
little contribution from either of them (Nurse 
et al. 1976). Some of their morphological features 
(Knussmann, 1969; Knussmann and Knussmann, 1969- 
70) as also genetic features (Nurse et al. 1976) 
distinguish Dama from other Negroid populations of 
Namibia, Angola and Botswana, which may be attribu
ted partly to their reproductive isolation (Nurse 
et al. 1976).

In 1960 and 1966 Dama numbered 44,353 and 
50,200 people respectively (Department of Foreign 
Affairs, Republic of South Africa, 1967).
0’Callaghan's estimates of 1970 and 1974 show 
respectively 66,291 and 75,000 living Dama. Their 
equilibrium numbers are difficult to enumerate at 
present although, like the Nama, Dama are now also 
pastoral ists, their life-style resembled San until 
quite recently. In the absence of any other 
authentic data I shall use the demographic 
features of San for the Dama. The actual popula
tion size of Dama is thus obtained to be 0.4582x 
44,353 = 20,323 individuals in 1960.
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3.2.4.2.4. Black Basarwa.
In addition to Dama two other Khoisan-speaking 

hunter gatherer Negroid groups from southern Africa 
namely Kwengo from western Caprivizipfel region of 
Namibia and. Danisan from the northwestern area of 
Botswana, have been included in this study. These 
are also described popularly as Black Basarwa (Lee, 
1979) or Black Bushmen (Gusinde, 1966; Almeida, 
1965) because of their morphological features.
Lee (1979) includes these groups, because of their 
cultural and linguistic similarities, under San 
although Nurse and Jenkins (1977a,b) find their 
genetic profile rather as non-Khoisanoid. Their 
population numbers are given by Lee (1979) as 
2,000 and 8,000 respectively (table 3.17). For
A

A = 0.458, the estimates of N for Kwengo and 
Danison are 916 and 3,664 respectively.

3.2.4 . 2 . 5 . Sandawe.
The Sandawe of central Tanzania are a small 

Khoisan-speaking tribe who live in comparative 
isolation although this isolation is by no means 
absolute either geographically or culturally. At 
the genetic level the permeability of Sandawe 
boundary is more or less one-sided i.e. emigration 
of women to other tribes, especially Turu (Neyman, 
1978) which too is a recent phenomenon (Neyman 
1970, 1978; Ran, 1970). Although reported to be 
morphologically close to Khoikhoi (Trevor, 1947)



13 5

and having migrated from southern Africa (Coon, 

1965), Sandawe are placed more close to Dama,

Bantu and Yoruba, than San and Khokhoi genetically 

(Godber et al. 1976; Nei and Roychoudhury, 1981).

According to the 1957 census there were about 

20,031 Sandawe within their tribal boundaries.

The grand total including emigrants to distant 

towns was 28,309 (East Africa Statistical Department 

1958). Trevor (1947) gave an approximate census 

of 21,000 Sandawe in 1944. Taking this earlier 

estimate as the mean census size, we get, for
/s

X= 0.458, the actual population size for Sandawe 

as 9,618.

3.2.4.2.6. Kgalgadi.

The Kgalgadi speak a Tsawana-related language 

and are found mostly along the fringes of the 

Kalahari, into which they are said to have 

retreated following the arrival of a second Negro 

immigrant wave represented by the ancestors of 

modern Rolong and Tlhaping. Their way of life 

has, until recently, greatly resembled that of 

the San (Schapera, 1953). Their numbers are 

difficult to estimate, though they probably run 

into several thousands (Nurse and Jenkins, 1977a).

3 . 2 . 4 . 2 . 7. Pygmies.

Pygmies are likely to have been a much larger 

group at one time, inhabiting perhaps most of
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central Africa between the 12°E and 16°E longitude.
At present there exist four major groups of Pygmies 
(Murdock, 1959):

1. Western, numbering about 27,000 living
in the region between Cameroon, Congo Brazza, 
the Central African Republic and Gabon,
2. Central Twa, numbering about 100,000
and being considerably acculturated and mixed 
in the central part of Congo Kinhasa,
3. Gebera, numbering about 9,000 living in 
Ruanda, and Urundi and having adapted a 
sedentary life in the plains near Lake Kivu, and
4. Mbutis, numbering about 32,000 (later 
estimates are somewhat higher) located in the 
Ituri forest in the northeast of Congo 
Kinhasa, who reveal the least Negro influence 
in physique and culture.

In addition, there are many splinter groups in
central and southern Africa (Caval1i-Sforza, 1972).
I have included in the present study two of the
least acculturated Pygmy groups namely Western and
Mbutis, although genetic data are now available on
central Twa also (see Beretta et at. 1977).

Population density in Pygmies is of the order
2of 0.2 inhabitants per km . Birth and death rates 

are not known exactly but there is some indication 
that infant mortality may be somewhat lower and 
adult mortality higher than among the neighbouring
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farmers (Caval1i-Sforza 1972). No results on age 
structure or matrimonial migration are available 
so far, although graphical representation of these 
important demographic parameters are given by 
Caval1i-Sforza and Bodmer (1971) and Cavalli- 
Sforza (1972).

from the description of marital distances 
among Pygmies given by Caval1i-Sforza (1972) and 
estimates of Wahlundian variance (Caval1i-Sforza,
1969), it is obvious that Pygmies, like San, travel 
farther to find spouses (a trait partly attributed 
to their nomadic life-style). However, the age 
structures, as interpreted from the graph of age 
blocks given by Caval1i-Sforza (1972) do not match 
with those of San given by Howell (1979). About 
37.87% of the population of a Pygmy group seems 
to be in the age group 15-44 years, compared to 
45.82% of San. In the absence of any other 
evidence, I shall use the demographic parameters 
derived from San data for estimation of mutation 
rates in Pygmies also.

The actual population size (N) for Western
and Mbuti Pygmies becomes 12,371 and 14,662
respectively. The size of the breeding group

2for a density of 0.2 persons per km , is 4,734 
individuals. No data are available on the 
average size of an endogamous group in Pygmies, 
although this number certainly is much smaller than the



"magic" number of 500 (Lee and de Vore 1968).
3.2.4.3. The estimation of t , b and c.o

Two estimates of t , the mean number ofo

generations a mutant survives prior to extinction, 

have been obtained. For the 80% endogamous 

panmictic unit, the value of t is given as

*0 - 2(

= 2 x 0.814 x log (2x132)

= 9.078 generations

In low density populations such as the African

hunter-gatherers under consideration here, the

probability that a rare variant will pass into

neighbouring populations before becoming extinct

is low. For this reason the estimate of t basedo

on the actual size of the 80% endogamous unit seems 

to be the appropriate one to use for the estimation 

of mutation rate by the method of Kimura and Ohta 

(1969) .

The two parameters of geometric offspring 

distribution used in estimating the probability of 

the drift of higher frequency alleles to singletons 

(P.j), namely b and c, were obtained by using the 

data on family size distributions on !Kung San 

given by Howell (1979). From the mean and variance 

of the expected progeny size for all the men and
/N / \

women reaching adulthood the estimates b and c, 

after correcting for pre-adult deaths are
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calculated to be 0.2388 and 0.4365 respectively.

3.2.4.4. The laboratory data.
Much of the data used here has been collated 

from published genetic surveys. In addition, 
unpublished data on some hunter-gatherer groups 
from Namibia and Botswana, kindly provided by 
Professor T. Jenkins, is also incorporated.
Table 3.19 shows the summary statistics of the 
data used.

The distribution of private/rare variants
in different Khoisan groups is given in table
3.20. For 22 protein loci, 11 variants were
designated to be private. While there is no
doubt, at present, regarding the Khoisan origin
of the variants like PGD^, HbftP ^us^man ̂ H b a ^ a' r   ̂

yar 2and Hba , the inclusion of the other seven
variants needs further justification because of 
their occurrence in non-Khoisan groups.

Two alleles of locus PGM^, namely PGM  ̂ and
7

PGM  ̂ occur with non-polymorphic frequencies in 
many African populations (Nurse et a l . 1974;
Beaumont et a l . 1979; Godber et a l . 1976; 
Hitzeroth et a l .  1979; Santachiara-Benerecetti 
et al. 1980). For PGMJ the relatively high 
frequency of 2.34% in Khoikhoi seems to justify 
its inclusion here as a private polymorphism.
Two individuals, one from Hei//om and the other 
from Zhu/twasi are found to possess the even
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TABLE 3.19 SUMMARY OF VARIOUS STATISTICS USED FOR ESTIMATING MUTATION RATE IN
AFRICAN POPULATIONS

Population/
Group

No\ of 
loci 
exam
ined

Single
locus
deter

minations

Actual
popu
lation
size
(N)

Variants/locus

k k Kt r

Source 
(see Notes)

A. San
1. Hei//om 15 1,123 916 0.2000 0.1429 0.5558 1 ,.9,10
2. Nharo 12 1,070 3,162 - - - 9,10
3. G/wi&G//ana 12 1,602 1,375 0.0833 - 0.2098 8,10
4. IXö S /hua: 16 1,503 916 O.0625 - 0.1527 10
5. G!aokx'ate 22 717 - 50 - * * - 9,10
6. G!ag!ai 15 525 2,978 - it it - 9,10
7. //au//en 11 1,785 1,375 0.0909 - 0.2062 9,10
8. Zhu/twasi 16 9,643 2,749 0.0625 0.0625 0.1059 1,5,6,7,9,10
9. Miscellaneous 8 606 100 - - - 6,7,10

Total San 22 18,574 13,517 0.4545 0.3529 1.4926 1,5-10

B. Kho ihoi 16 3,205 15,941 0.0625 - 0.7397 5,6,7,10

C. Total Khoisan 22 21,779 29,458 0.5000 0.4706 2.5681 1,5-10

D. Negroid hunter-gatherers
1. Dama 17 2,199 20,323 0.1176 - 2.6230 10,12
2. Kwengo 14 480 916 - ** - 11
3. Danisan 21 1,610 3,664 0.0952 -- 0.7187 10
4 . Kgalgadi 16 1,831 6,154+ 0.0625 - 0.5222 15
5. Sandawe 13 2,646 9,618 0.1538 0.1538 1.1499 4

E. Central African Pygmies
1. Western 23 18,627 12,371 0.3043 0.2727 0.9691 2,3,13,14
2. Mbuti 13 2,100 14,662 0.0769 0.0769 1.0277 2,3,13,14

Total Pygmies 23 20,727 27,033 0.3913 0.3182 2.0177 2,3,13,14

NOTES: 1. Botha et al, 1972; 2. Cavalli-Sforza, 1972; 3. Cavalli-Sforza et al,
1969; 4. Godber et al, 1976; 5. Jenkins, 1972; 6. Jenkins et al, 1968;
7. Jenkins et al, 1971; 8. Jenkins et al, 1975; 9. Nurse et al., 1977;
10. Nurse and Jenkins, 1977a; 11. Nurse and Jenkins, 1977b; 12. Nurse
et al, 1976; 13. Santachiachra-Benerecetti et al, 1980; 14. Vergnes et al,
1979; 15. Unpublished data.
* Estimates obtained after excluding loci with n<50.
** No estimate possible, for n<50 for all loci.
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TABLE 3.20 NUMBER OF COPIES AND FREQUENCY OF PRIVATE AND RARE VARIANTS IN
KHOISAN POPULATIONS

Copies (% frequency)
Variant San Populations San Khoikhoi Khoisan

ÄbaVar 1
*

G/wi and G//ana (38;21.88%) 38(1.13)* - 38(0.98)*
tffcaVar 2

- *
Zhu/twasi (1;0.05%) 1(0.03)* - 1(0.02)*

H bQ ° Bushman //au//en (16;5.99%)*
Zhu/twasi (4;0.21%), Nharo (1; 
0.34%)

21(0.62)* - 21(0.54)

Pep/12 Present in all populations 
except Glaglai & Glaokx'ate

18(1.33) 7(1.38) 25(1.10)

2 * * *
PepD G/wi and G//ana (3;1.16%) 3(0.23) - 3(0.18)

3 * * ★
P epD Hei//ora (2;1.48) ; Zhu/twasi 

(3;0.48)
5(0.38) 5(0.30)

p g d h Hei//om (1;0.81%) 1(0.04)* 1(0.04)*
p g d r - - 1(0.31) 1(0.04)
A C P i G/wi & G//ana (2;0.70) 2(0.14) 1(0.33) 3(0.18)
AC PR Present in all populations 

tested
353(24.96) 65 (21.67) 418(24.39)’

AX ? Present in all groups except 
G!aokx'ate

93(5.26) 17(5.31) 110(5.27)

ADA^ Zhu/twasi (1;0.16) 1(0.07) 1(0.16) 2(0.10)

PGM6 G!ag!ai (1;1.39%); Zhu/twasi 
(1;0.08%)

2(0.08) 9(2.34)* 11(0.03)*

PGM1 Hei//om (1;0.55%) ; Zhu/twasi 
(1;0.08%)

2(0.08)* - 2 (0.07)*

PGM2 Present in all groupsexcept 
G!ag!ai

68(2.76)* 1(0.26) 69(2.43)*

TfD1 Present in all populations 
tested except Glaokx'ate

468(12.29)* 4(0.79) 472(10.94)
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7rarer variant allele PGM^ , the introduction of 

which from outside is unlikely.
2Two variants of peptidase D, namely PepD and

3
PepD , are considered to be of Negroid origin

(Nurse and Jenkins, 1977a). In fact, the first 

report on peptidase D by Lewis and Harris (1969) 

gave these variants respective gene frequencies 

of 0.0240 and 0.0205 in Negro subjects of W. Indies 

extraction. However, in most of the recent reports 

on peptidase D in Negroids, evidence for the 

presence of these variants is lacking. Out of 

7 South African Negroid populations tested for 

peptidase D, only Mseleni (Zulu/Tonga) showed a

1974) . For the other 747 subjects of Bantu and

Khoisan-speaking Negroids, namely Kavango (Nurse

and Jenkins, 1977b), llama (Nurse et al. 1976),

Ilanisan (Nurse and Jenkins, 1977a), Riemvaasmaak

(Nurse and Jenkins, 1978) and Njinga (Nurse et al.

1979), tested for this enzyme, no copy of the 
2 3variants PepD and PepD was recovered. The 

probability of such an event is significantly low 

(P=l.73xl0'16) .

The only other non-Khoisan population with
2

PepD variants is the Griqua (Nurse and Jenkins,

1975) , a mixed population with large Khoikhoi/ 

Caucasoid admixture. On the other hand, some of 

the San populations reveal the presence of these

polymorphic frequency (Nurse and Jenkins,
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variants in appreciable numbers. On the basis of
2gene frequencies, PepD is assigned to Hei//om and

PepD^ to G/wi and G//ana.
R 1and TfD are the two other alleles report 

ted to be present in many African populations. In 
Pygmies, the frequency of is about 14% (see
for example Santachiara-Benerecetti et al. 1977, 
1980; Beretta et al. 1977 and VergneS et al. 1979) 
Its frequency in some western African populations 
has also been reported to be high by Vergnes and 
Gourdin (1974). Since there are two different 
loci of high frequency in Africa, one in
Khoisans and one in Pygmies, two separate mutations 
cannot be ruled out. However, it is in Khoisans 
that the frequency of this allele reaches as high 
as 51% in some groups with an average of 24.39% 
(table 3.20). On the basis of comparatively high 
frequency of this allele in Khoisan groups I have, 
therefore, assigned this allele as private to 
Khoisans.

The transferrin D variant attains high frequ
encies in Northern San of about 10-20%. In the 
other southern African Bantu - speaking Negroid 
populations its frequency is much lower (about 
3-4%; see for example McDermid and Vos, 1971; 
Hitzeroth and Hummel, 1978) and is very low in 
Khoisan-speaking Negroids. For this reason TfD^
has been assigned also to Khoisans.

2The designation of the PGM^ allele as private
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to Khoisan may be considered rather arbitrary, since
it has also been detected in appreciable numbers in
various other non-Khoisan populations. For example,
Danisan and Kgalgadi, who otherwise show little
Khoisan admixture, show this allele in very high
frequencies (9.741 and 6.85%, respectively).
Interestingly, however, this variant is absent from
the other non-Khoisan and hunter - gatherers of
southern Africa, specially Dama and Kwengo.

The private alleles for the non-Khoisanoid,
morphologically Negroid, hunter - gatherers of
southern and eastern Africa are shown in table
3.21. While the presence of PGD in the other
south African populations indicates Dama ad-

2 Cmixture, the designation of AK  ̂ and ACP^ as Dama
and Kgalgadi variants respectively, on the basis
of relative frequencies and assumption of parallel
mutations, needs further clarification.

2Frequencies of AK^, as high as those of Dama 
(8.82%), //au//en (8.54%) are unusual outside the 
Indian subcontinent (Tills et at. 1971). Consider
ing that the Dama received little or no genetic 
contribution from Khoisans (Nurse et al. 1976) and
that they have been absorbed by Khoikhoi and San 
in large numbers, the allele is consider to be of
Dama origin (Nurse and Jenkins, 1977a).

COn the other hand, ACP , an allele quite 
common in Caucasoids is detected in very low



TABLE 3. 21 NUMBER OF COPIES 
VARIANTS

14 5 -
AND FREQUENCY 
IN NON-KHOISAN

OF PRIVATE AND 
NEGROIDS

RARE

COPIES (% FREQUENCY)
Variant Dama Kwengo Danisan Kgalgadi Sandawe

HboB 2

Fast

- -
*

10(4.03) -

GFX' * * ** 11 (14.29) * * * *

LDHFast ** * * * * ** 3(0.72)

Pep A 2

4
4(2., 17) 8(11.43) 7(4.55)

*
10(4.03) **

I CD ** ** 2 (1.30) ** **

p g d r 7(2.43)* - - 1(0.40) 2 (0.47)

PHIWar ** ** * * * * 7(1.65)

ACpC 1(0.54) - - 4 (1.61)* -

a c p r

2

1(0.54)
*

6 (8.57) 8(5.19) 26(10.48) -

A l
21 (8.82) ** 2(0.81) 3(0.74)

CAl
** * * 9(5.84) 9(3.63) **

ADA2 1(0.26) - - * *

PGM1̂ - - - - 2 (0.49)

p g m \ - - 15(9.74) 17 (6.85) 3 (0.74)

TfD1 1 (0.35) 1(1.43) 4 (2.53) 6(5.56) 20 (4.72)

* Private.
★ * Not tested.
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numbers in populations of southern Africa. In
Kgalgadi, however, the allele reaches polymorphic
frequencies. It is unlikely that Kgalgadi, with
no evidence of other Caucasian markers will have
derived this character in such high frequency by
admixture. Similar arguments for a new focus of 

CACP  ̂ in the Negro populations of southern Angola 
and northern Namibia are given by Nurse and Jenkins 
(1977a).

The two private variants of Sandawe, namely
7 p o c ̂

PGM^ and LDH " have been assigned similarly 
on the basis of isolated recovery of variants.
The polymorphic variant of PHI has, however, been 
excluded because of its presence in high frequencies 
in the neighbouring Nyaturu, a Bantu-speaking 
Negroid group of central Tanzania (Godber et al. 
1976) .

For 23 loci, as many as 9 private variants 
have been recovered in the Pygmy populations 
(table 3.22). Two of these, namely P G M and 
HboJ latbush are ̂ in present in polymorphic

frequencies.
The Ibadan variant of G-6-PD has been 

reported in a number of other populations from 
western Africa and the Sahara (Vergnes et al.
1978). However, although (3j ^ aĉ an pas only low 
frequencies in Pygmy populations, because outside 
groups are thought not to have contributed to the
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TABLE 3.22 NUMBER OF COPIES AND FREQUENCY OF PRIVATE AND RARE 

VARIANTS IN PYGMIES FROM CENTRAL AFRICA

Variant Western
Pygmies Mbuti All Pygmies

Copies Freq.(%) Copies Freq.(%) Copies Freq.(%)
^^Flatbush 47 *1.87 . **47 *1.69
^Babing a 15 0.60* - **15 0.54*
Pep A 3 - - 2 0.49* 2 0.14*
^Ibadan 7 0.48* - 7 0.48*

4
PGM* 2 0.06* _ 2 0.05*
P£Af4Pyg

2
10 0.31* - 10 0.28*

PGM6J?yq
2

173 5.30 26 7.43 199 *5.51
9

PGM
2

3 0.09* - 3 0.08*
PepC2 9 *0.28 - 9 *0.71

* Private
* * Estimated from Cavalli-Sforza's (1972) data.



Pygmy gene pool, it is considered that this allele 
is a Pygmy mutation.

3.2.4.5. Estimation of k^, and K.
Table 3.19 shows the estimates of the number of

/ \  /N

alleles recovered per locus in samples (k and k ) 
and the estimated values, extrapolated to the size

A /\

of the total population (K). The estimates K have 
been obtained by using the extrapolation equation 
of Rothman and Adams (1978). The values of g(j), 
the relative proportions of various rare alleles 
by the number of copies were obtained from the 
observed distributed for the total Khoisan rare 
alleles. The vector of g(j) so obtained is, 
however, significantly different from such other 
estimates obtained earlier on the populations 
from Australia, Papua New Guinea and India.

3.2.4.6. Estimates of mutation rate
The estimates of mutation rate given by the

A

indirect methods, P^_g (Kimura and Ohta, 1969),
^NEI 1977) and p^ ^ (Rothman and Adams, 1978)
for various hunter-gatherer populations of southern 
and central Africa are given in table 3.23.
Because no private alleles were recovered for 
Glaokx’ate, G!ag!ai and Kwengo, possibly because 
of small sample sizes, no estimates of p were 
obtained. Nei’s method is not applicable in a

I

further seven populations because either sample 
sizes were less than 1/q or of non-recovery
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6TABLE 3.23 ESTIMATES OF MUTATION RATE (xlO ) 

’ IN VARIOUS AFRICAN POPULATIONS

Population/
Group V o pNEI PR-A

A. San

1. Hei//om 33.42 82.51 10.22

2. Nharo - - -

3. G/wi & G//ana 8.40 - 2.57

4. !Xo & /huä: 9.18 - 2.81

5. G!aokx'ate - ** -

6. G!ag! ai - ** -

7. //au//en 8.26 - 2.53

8. Zhu/twasi 2.12 2.28 0.65

Average 7.67 14.13 2.35

B. Khoisans
1. Total San 6.08 2.12 1.86

2. Total Khoikhoi 2.56 - 0.78

3. Total Khoisan 4.80 1.23 1.47

C. Negroid hunters--gatherers
1. Dama 7.11 - 2.17

2. Kwengo - * * -

3. Danisan 10.80 - 3.31

4. Kgalgadi 4.67 - 1.43

5. ' Sandawe 6.58 2.85 2.01

Average 5.83 0.71 1.78

D. Central African Pygmies
1. Western 4.32 1.98 1.32

2. Mbuti 3.86 1.12 1.18

Total Pygmies 4.11 1.02 1.26

* * No result.
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of rare alleles for some of these populations which
A

affect the average estimates of considerably.

The estimates of P obtained by the three 

methods for total Khoisans, non-Khoisanoid morpho

logically Negroid hunter - gatherers and total 

Pygmies are quite similar. The average over the 

three methods for each population yields values of 

mutation rate of 2.50x10 2.77x10  ̂ and

2.13x10  ̂/locus/generation respectively.

The estimates of mutation rate obtained for 

individual groups are on average higher than 

those obtained by pooling the data over total 

populations. The average estimates for individual 

values are inflated by some particularly high 

estimates of y , as in the IIei//om. It may, 

however, be noted that the average value obtained 

by pooling the data is relatively more efficient.

3.2.4.7. Discussion.

The estimates of mutation rate generated 

by the three procedures used here in hunter- 

gatherers of Africa are intermediate between 

such estimates generated for the south Indian 

Scheduled Tribes (table 3.16) and the Papua New 

Guinean tribes (table 3.9). However, the estimates 

generated by the method of Rothman and Adams (1978) 

in these populations are consistently lower 

than those obtained by this method for other 

world populations.
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This bias toward lower values in the mutation 

rate estimates is mainly because of the lower value 

of g (1)-Eg (j)Pj^» obtained for the African popula

tions (0.0337). Similar estimates of g (1)-Eg (j )P^ ̂ 

obtained for Australian Aborigines, Papua New 

Guineans and South Indian Scheduled Tribes are 

0.2177, 0.2770 and 0.2479 respectively. Although 

Rothman and Adams (1978) recommend the use of a 

vector of g(j) estimated from the demographic 

data, the above estimates have been obtained from 

the observed distribution of rare allales 

recovered in large samples over sets of loci.

Except for the estimates of African populations, 

all the other estimates obtained earlier are 

quite close to the estimate of 0.2096 

generated from demographic data on Yanomama by 

Neel and Rothman (1978).

However, it is acknowledged that the 

relative proportions of  ̂ generated by a set 

of b and c values represent the realtive distri

bution of alleles only in the present generation.

If the population is undergoing any demographic 

changes, this distribution becomes redundant 

(Rothman and Adams, 1978; Neel et al. 1980c). 

Similar trends will be reflected in the estimates 

of g(j). However, despite these expected 

variations, the low value of 0.0377 in African 

populations is an aberrant phenomenon.
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The extraordinarily high estimates of y
obtained for the Hei//om are attributable to their
overlap in distribution with the Zhu/twasi group.
Nurse and Jenkins (1977a) have also referred to
the possible gene flow between Hei//om and Zhu/
twasi. Since two of the variants considered

3 7private to Hei//om (PepD and PGM )̂ are also 
present in the much larger Zhu/twasi populations 
(table 3.20), the estimates of y in Hei//om may 
be considered provisional.

Standard errors for these estimates are 
not given. This is because the variation in 
the number of alleles among loci and also the 
errors associated with estimating the actual 
size of populations has to be taken into 
consideration. In addition, in Kimura and Ohta's 
(1969) method the variance due to the estimate of 
t is quite large.

The estimates of mutation rate obtained on 
African populations may be viewed with certain 
cautions. One of the most probable sources of 
error is the assumption of neutrality. Appreciable 
amounts of selection could bias the estimates in 
either direction. However, the choice of rare 
alleles in the method of Nei and singletons in 
that of Rothman and Adams ensures that the role 
of selection in maintaining the alleles biases 
these estimates to a minimum.



The rates of mutation obtained by disregarding 
the structure of population are on an average 
lower than those obtained from individual groups. 
For neutral genes such pooling should have led to 
no differences in the estimates (Nei, 1977). Such 
differences, however, are expected if the 
deleterious genes exist among the set of loci. 
However, it would be premature to generalize 
from these differences in African populations to 
all human populations.
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3.2.5. Some additional estimates.

The indirect estimates of mutation rate in the 

populations from Australia, Papua New Guinea and 

India, reported by Bhatia et al • (1979), Bhatia et al • 

(1981) and Bhatia (1981b)respectively, were 

obtained by the then available procedures of 

Kimura and Ohta (1969), Nei (1977) and Rothman 

and Adams (1978). These results have been 

presented, with slight modifications, in the 

original format in sections 3.2.1. to 3.2.3.

To maintain uniformity in the presentation, the 

results on African populations have also been 

obtained by the same procedures and presented in 

section 3.2.4. in almost similar style.

Recently, another procedure for indirect 

estimation has been suggested by Chakraborty (1981) 

on the basis of the number of rare alleles
A

recovered in a sample (k ). Extending this 

approach to singletons recovered in a sample 

(k ) a new method of moment estimator has been 

suggested in Chapter 2. To update my previous 

results I have estimated the rate of mutation 

by these two new methods for all the popula

tions reported in the previous sections. To 

keep the section self-sufficient, the results 

are presented in the form of a report.
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3.2« 5.1 . Introduction,
The estimation procedures of Chakraborty (1981) 

and the singletons approach are summarized as 
follows:

1. Chakraborty*s method. The estimator is given
as

yCHAK
A - v 'A  - 4Bk

8NB (3.7)

where k is the number of alleles recovered in ar
sample of 2n genes and N is the actual population 
size. A and B are given as 

[2nq]
A = E j andj-1

[ 2nq]
B = E (2n-j)

j = l

where [2nq] is the largest integer value equal, 
to or less than the inner expression. For large 
[2nq] , A is approximated to log [2nq]+ y, where y 
is Euler’s constant and B is approximated to -log
tl-q].
2. Singletons__method. This method estimates the
mutation rate as

✓s k (2n-l)
p, - — ---------- (3.8)

s 4N(2n-k )

where kg is the number of singletons recovered 
in the sample of 2n genes.



3.2.5.2. Results.

The summary statistics of the data required 
in obtaining the estimates for various popula
tions are given in table 3.24. Only populations
with non-null results for k or k have beenr s
included.

Table 3.25 shows the estimates of mutation 

rate obtained by the two methods. In addition, 

the estimates of mutation rate obtained earlier 

by Nei’s method have also been listed for 

comparison. In Toda and Hei//om the estimates 

of y by Nei’s methods are more than two fold 

those obtained by the approach of Chakraborty. 

This is because Nei’s method invariably leads 

to over-estimation of mutation rate when sample 

sizes are small (Chakraborty, 1981), especially 

when 2nq<2.7183. As noticed by Chakraborty the

methods of Chakraborty and Nei lead to similar
/\

results for large sample sizes, although
✓N

is always smaller than

The singletons method in comparison leads 

to fewer estimates because of the failure to 

recover singletons in some population samples.

The estimates of mutation rate obtained by the 

singletons method are still on an average higher, 

despite the fewer observations, than those given 

by Chakraborty's method.

The probability of non-recovery of any
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TABLE 3.24 SUMMARY STATISTICS OF THE DATA USED FOR ESTIMATING THE MUTATION
RATE FOR VARIOUS POPULATIONS

Population/group
No. of
peptides
examined

Mean
No.
of
genes
sampled

(2n)

Actual
population

size

(N)

Variants/locus

„ + 
kr ks

*
A. Individual populations
1 . Karkar Island (PNG) 18 1,822 3,735 0.111 0.111
2. Siassi Island (PNG) 17 538 2,310 0.118 0.118
3. Koya (SI) 19 831 13,297 0.211 0.105
4. Rajgond (SI) 17 420 8,136 0.059 -
5. Gadaba (SI) 16 1,629 1,264 0.063 -
6. Yerukula (SI) 17 67 4,357 * * 0.059
7. Toda (SI) 22 209 416 0.045 0.045
8. Kadar (SI) 22 425 681 0.045 0.045
9. Hei//om (NAM) 15 150 916 0.143 0.133
10. Zhü/twasi(BCT) 16 1,205 2,749 0.063 0.063
11. Sandawe (TAN) 13 407 9,618 0.154 -
12. W. Pygmies (C.AFR) 23 1,620 12,371 0.273 -
13. Mbuti (C.AFR) 13 323 14,662 0.077 -

B. Regional populations
1. N. Andhra tribes (SI) 29 2,632 52,560 0.241 0.069
2. S. Andhra tribes (SI) 22 524 12,085 0.045 0.045
3. Kerala/TN tribes (SI) 27 1,769 52,002 0.185 0.074
4. San (NAM, BOT) 22 1,768 13,517 0.353 0.091

C. Continental populations
1. Australian Aborigines 25 5,214 9,160 0.520 0.240
2. Papua New Guineans 21 12,026 34,450 0.952 0.524
3. S. Indian Sch. Tribes 30 4,521 116,089 0.467 0.167
4. Khoisans 22 1,980 29,458 0.471 0.091
5. Pygmies 23 1,802 27,033 0.318

Note: 2 5 additional populations studied have not been included because of
the recovery of no rare/private alleles.

* ★
sample size <50

+ The estimates of k based only on loci with n>50. r



- 1S 8 -
TABLE 3.2 5 ADDITIONAL RESULTS OF p OBTAINED BY USING 

CHAKRABORTY AND SINGLETONS METHOD

★
Population/groups

pNEI

6p x 10 

pCHAK h s
A.
1 .

Individual populations3 
Karkar Island 2.71 2.64 7.44

2. Siassi Island 7.56 5.36 12.70
3. Koya 1.87 1.53 1.98
4. Raj Gond 1.26 0.94 -
5. Gadaba 4.43 3.71 -
6. Yerukula * * * * 1.09
7. Toda 37.00 18.60 27.07
8. Kadar 11.55 8.43 16.61
9. Hei//om 82.51 39.05 36.09

10. Zhu/twasi 2.28 1.87 5.72
11. Sandawe 2.85 1.92 -
12. W. Pygmies 1.98 1.65 -
13. Mbuti 1.12 0.72 -

Average 4.62b _ n .b 2.54 2.86°

B.
1 .

Regional populations 
N. Andhra tribes 0.35 0.30 0.33

2. S. Andhra tribes 0.57 0.49 0.94
3. Kerala/TN tribes 0.31 0.25 0.36
4. San 2.12 1.92 1.68

Average 0.84 0.74 0.83

C.
1 .

Continental populations 
Australian Aborigines 3.58 3.08 6.51

2. Papua New Guineans 1.44 1.30 3.80
3. S. Indian Scheduled Tribes 0.26 0.23 0.36
4. Khoisan 1.23 1.14 0.77
5. Pygmies 1.02 0.85 -

Average 1.51 1.32 2.29
* * -
Only populations with non-null results of and included.
No result for p and p possible because of 2n<100NEI.NEI CHAK v
25 additional populations with no result for k̂ _ or k^.

averaged over 34 populations. The methods of Chakraborty and 
Nei are inapplicable in 4 of the 38 of these populations because 
of n<50.

c averaged over 38 populations.
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variant in a sample decreases with less conserva
tive upper limits (q). The lack of singletons in 
Raj Gond, Gadaba, Sandawe, W. Pygmies, Mbuti, 
as also in the total sample of Pygmies, may be 
viewed in this regard. The rare allele approach 
is, however, available only with samples of sizes 
more than 1/q genes. No estimate of mutation rate 
was thus possible in Yerukula (2n=67), although a 
private variant, P G M ^ , was recovered as a single
copy (Bhatia, 1981; Blakeet at. 1981) which

a ^
yields a value of y^ as 1.09x10 per locus/

s
generation.

The inconsistencies in the estimates of y 
for individual populations, there fore, are largely 
an artefact of small sample sizes. The results, 
however, exhibit less variability when the 
populations are pooled on a regional or continen
tal basis and the sample size is sufficient. The 
mean estimates of mutation rate on a continental 
basis by the rare allele methods of Nei and 
Chakraborty and the singleton approach are 1.51x10 ^,1.32 
10  ̂ and 2.29x10  ̂per locus/generation respectively.

3.2.5.3. Discussion.
Two important observations can be made from 

the results of mutation rates given in table 3.25. 
Firstly, the choice of singletons leads on an 
average to higher estimates of y than those 
obtained by the use of rare alleles. It may be
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that the choice of q influences the estimates of y 
in some way. Secondly, it is clear that there is a. 
paucity of singletons in African populations.

To illustrate the role of an arbitrary upper 
limit (q) in influencing the estimates of mutation 
rate, the sampling equations of Nei (1977) and 
Chakraborty (1981) have been employed for various 
subsets of allelic data. The estimates of y in 
Australian Aborigines, Papua New Guineans and South 
Indian Scheduled Tribes (table 5.26) exhibit a decline 
in the value of y with the moving upward of the limit 
for defining variants. The largest estimates are 
obtained when only singletons are used.

Nei (1977) has pointed out that in the presence 
of deleterious mutations, the use of a small value of 
q with large sample size also estimates the rate of 
deleterious mutations including other types of mutations. 
For large values of q an under-estimate of mutation 
rate will be obtained by his formulation if deleterious 
genes are present. Accordingly small values of q lead 
to estimates of the total mutation rate in such 
situations. The choice of singletons (q = y ) , thus
measures the total rate of mutation if deleterious 
genes are present and the sample size is large.

One of the problems, alluded to in section 3.2.4 
earlier, is the very low recovery of singletons in 
hunter-gatherer populations from Africa. Compared
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to the values of 0.462, 0.550 and 0,358 for the 
/

ratio k xk in Australian Aborigines, Papua Now 
Guineans and South Indian tribes respectively, the 
ratio in Khoisans and Pygmies is 0.193 and zero 
respectively. One of the rea sonsfor this aberrancy 
is the relatively positive growth trends in 
Australian Aborigines, Papua New Guineans and South 
Indian tribes while South African populations are yet 
to recover from their earlier drop in numbers.

One advantage in using the singletons approach 
is its applicability to populations with sample 
sizes smaller than 100 genes for q^O.Ol or smaller 
than 1,000 genes with q=0.001. This is so because 
the singletons approach is not exactly an extension 
of the rare allele method.





Chapter 4

FACTORS AFFECTING ESTIMATION OF ELECTROMORPH 

MUTATION RATES

4.1. Introduction»

In the previous chapter, the average electro- 

morph mutation rates for different sets of loci have 

been obtained for various world populations. A 

number of factors, however, could affect these 

estimates of mutation rates. These include the 

choice of protein loci for which electrophoretic 

data are available, the variability of mutation 

rates among loci and the different aspects of 

allelic data which are used as input. In addition, 

the role of sample size could affect the estimates 

of mutation rates obtained by different methods.

To illustrate the role of these factors, two 

sets of data are analyzed in this chapter. In 

section 4.2. the estimates of mutation rate in 

Australian Aborigines are re-examined for the 

effects of sample size, molecular size and 

structure and heterozygosity. In section 4.3. 

the estimates of mutation rate on Amerindians 

obtained by Neel and Rothman (1978) and by 

Chakraborty (1981) are compared to determine the 

effects of their different sampling algorithms on

the estimates.
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4.2. Factors Affecting Estimation of Electromorph 

Mutation Rates in Australian Aborigines.

During the past decade a number of statistical 

methods to calculate the mutation rates at cistron 

level from electrophoretic data, both direct (Mukai, 

1970; Mukai and Cockerham, 1977) and indirect 

(Kimura and Ohta, 1969; Nei, 1977; Rothman and 

Adams, 1978), have been developed. The latter 

methods are based on the detection of private 

electrophoretic variants in random samples from 

isolated populations. Some of the assumptions 

made are: (1) that there is a complete one-to-one

correspondence between the incidence and -detection 

of rare electromorphs, (2) that all the rare

alleles observed in the population are introduced 

and maintained through mutation only, and (3) 

that there is a constancy of mutation rates, on an 

average, over any subset of protein and enzyme loci.

The class of relationship given by (1) is very 

difficult to evaluate as estimates of number of 

alleles depend critically upon sample size (Harris 

et al.t 1974; Koehn and Eanes, 1978; Eanes and 

Koehn, 1978; Bhatia et at., 1979) and upon the 

resolution of the experimental techniques 

employed to discriminate allelic variants 

(Johnson, 1977a). The last point is not trivial 

as new techniques suggest that there exists a 

large reservoir of previously undetected alleles
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(Johnson, 1977b). Introduction of new alleles by 
sources other than mutation, e.g., intragenic 
recombination, was suggested by Watt (1972),
Koehn and Eanes (1976) and Strobeck and Morgan 
(1978).

The assumption included in (3) is the weakest 
since inter-locus variability in mutation rates has 
been noted by Nei et al. (1976b).. On the basis of
aminoacid substitutions in various polypeptide 
chains, they found this variability to follow the 
gamma distribution. Zouros (1979) pointed out 
that over a large range of species only certain 
types of enzymes occupy the same tail of the 
distribution, indicating the role of physicochem
ical features of the molecules and this may explain, 
in part, the inter-locus variability in mutation 
rates.

Parameters of genetic variation, like hetero
zygosity and the number of rare alleles, are 
affected by a number of factors. For hetero
zygosity these include:- substrate specificity 
(Gillespie and Kojima, 1968), physiological 
function (Johnson, 1974), quaternary structure 
(Zouros, 1976; Harris et Ward, 1977)
and subunit size (Koehn and Eanes, 1977; Nei 
et aZ-,̂  1978; Brown and Langley, 1979). The 
relationship among these has been demonstrated 
for both invertebrate and non-human vertebrate
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species. However, Harris et al. (1977) have
detected lack of correlation between subunit 
molecular weight and heterozygosity in European 
human populations. Nei et al. (1978) attributed
this to the low level of mean heterozygosity in 
human populations.

In the case of the number of rare alleles 
the factors include:- effective population size 
(Ohta, 1972; Rothman and Adams, 1978), intragenic 
recombination (Morgan and Strobeck, 1979), subunit 
size (Eanes and Koehn, 1978), founder effect 
(Thompson and Neel, 1978), polymorphism (Harris, 
1975), bottleneck effect (Bhatia et a2.,1979) and 
transient distribution of neutral alleles (Nei and 
Li, 1976). The list is by no means exhaustive 
and a whole set of cause-effect factors, which 
include the total number of 'alleles segregating 
at a locus, mean level of heterozygosity and 
subunit number etc. can be included for their 
role in the introduction and maintenance of rare 
alleles in a population. Since the estimation of 
mutation rates by indirect methods depends on the 
number of rare alleles, it is important to 
reassess the role of the above factors in deter
mining these rates. In addition, because of the 
correspondence between molecular weight and 
mutation rates and the former's role in intro
ducing interlocus variability in mutation rates
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at the peptide level (Nei et a l 1976b),it may be 

relevant also to calculate the mutation rates at 

base pair level (Mukai and Cockerham, 1977), making 

cistronic comparisons independent of molecular 

weight.

4.2.1. The data.

Most researchers who have studied the role of 

variability in mutation rate and heterozygosity, 

because of the difficulty of controlling all the 

factors involved, restricted themselves to answer 

only one or two queries. They compensated for 

the lack of control by increasing the range of 

species for which results were given. However, 

an ideal choice for an answer is a subdivided 

population, distributed over a large geograph

ical area and sampled extensively. The electro

phoretic results for Australian Aborigines reviewed 

by Blake (1979) , seem to provide an adequate set of 

data for analysis. Blake's data as retabulated by 

Bhatia et al. (1979) has been used in the present

study. The loci included, arranged into monomers 

and multimers, and their respective sample sizes, 

are shown in table 4.1. The multimer loci are all 

dimers except for the LDH loci. The subunit 

molecular weights have been taken from the tabula

tion by Hopkinson et al. (1976). A total of 15

multimeric and 10 monomeric loci have been 

included. In the absence of any direct relation-
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TABLE 4.1 LIST OF PROTEINS AND ENZYMES INCLUDED IN THE STUDY AND THEIR RESPECTIVE SAMPLE-SIZES, 

SUBUNIT SIZES, NUMBER OF TOTAL AND RARE ALLELES AND EXPECTED HETEROZYGOSITY

Enzyme System Abbrevi
ation

No. of 
indivi
duals 
sampled

Subunit*
size
(in daltons)

Total
number
of
alleles

Total 
number 
of rare 
alleles

Hetero
zygosity
(l-EVp

A. Multimerics**
Hemoglobin- Hb- a 2692 15,000 1 - -
Hemoglobin- 3 Kb- 3 2692 16,000 1 - -
Superoxide di3mutase s°da 1795 16,000 1 - -
Glyoxalase GLO 1290 24,000 2 - 0.0380
Esterase D EsD 1556 28,000 2 - 0.1467
Malate dehydrogenase MDH 2964 35,000 1 - -
Lactate dehydrogenase- A l dh a 4180 35,000 2 1 0.0002
Lactate dehydrogenase-B ldhb 4180 35,000 2 1 0.0004
Glutamic oxalaceticacid transam- GOT 748 46,000 1 - -
Peptidase A inase Pep A 3034 46,000 2 1 0.0008
Isocitrate dehydrogenase IC°s 1226 48,000 1 - -
Glutamic pyruvic transaminase GPT 1391 50,000 2 - 0.3211
6-Phosphogluconate dehydrogen- 6-PGD 4035 52,000 3 1 0.1031

ase
Glucose-6-phosphate dehydrogen- G-6-PD 1014 53,000 2 1 0.0010

ase
Phosphohexose isomerase PHI 1569 62,000 2 1 0.0006

B. Monomerics
Acid phosphatase-1 ACP 4016 15,000 4 1 0.0675
Adenylate kinase-1 AK 3535 22,000 1 - -
Carbonic anhydrase-1 « 1 3751 29,000 3 2 0.0516
Carbonic anhydrase-2 3751 29,000 2 1 0.0425
Diaphorase DIA 1861 30,000 1 * -
Adenosine deaminase ADA 1437 34,000 2 - 0.0309
Phosphoglycerate kinase PGK 1569 50,000 1 * -
Phosphoglucomutase-1 PGMĵ 3919 51,000 4 2 0.2097
Peptidase 9 Pep B 3189 55,000 3 2 0.0208
Phosphoglucomutase-2 PGM2 3790 61,000 3 2 0.0284

* After Hopkinson et al (1976)
** Except LDH loci, which are tetramers, all multimeric loci are dimers.
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ship between subunit number and subunit size 
(Hopkinson et aZ..,1976), the data for subunit 
sizes were also pooled together.

The electromorph mutation rates per cistron 
per generation were calculated by using the 
methods of Kimura and Ohta (1969) and Nei (1977). 
The rates at cistron level were then converted 
to mutation rates per base pair per generation 
as suggested by Mukai and Cockerham (1977) with 
only a slight modification. The mutation rates 
for multimers were computed by subtracting 14% 
and 28% from the total number of base pairs for 
dimers and tetramers respectively. This accounts 
for the aminoacid residues involved in surface 
interactions (Turner et al.,1979).

The coefficients of correlation between 
various parameters were computed by using both the 
Spearman's rank order non-parameteric and Pearson's 
product moment correlations. Whenever required, 
the variables were log-transformed to equalize and 
normalize 'the variances. The analysis was 
performed by structuring different classes within 
each category to equalize or isolate the role of 
a particular factor.

4.2.2. Results.
Table 4.2 shows the distribution of loci at 

which private variants were detected. The data
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have been classified into two categories, namely 
multimers and monomers to avoid the role of 
functional constraints in influencing other factors. 
Although the difference is small between multimers 
and monomers with respect to subunit size (mean 
values and S.D.'s are 37.53 +_ 14.85 and 37.60 ^  
15.48) and mean expected heterozygosity (0.0408 and 
0.0431) respectively, the retention of these 
divisions is relevant for other comparisons.

4.2.2.1. Relationship between the number of rare 
alleles and:

(1) Sample size: Eanes and Koehn (1978) and
Bhatia et al. (1979) showed that the efficiency
of estimates of mean number of electrophoretic 
alleles increases with sample size. This was 
observed also in the present study. The 
product moment correlation of the total number 
of alleles as well as the total number of 
rare alleles with sample size was significantly 
positive (r=0.537, d.f. 23, P<0.003 and 
r=0.625, d.f. 23, P<0.001 respectively). The 
relationship showed better correspondence in 
monomers (r=0.667, d.f. 8, P<0.018 and r=0.710, 
d.f. 8, P<0.011 respectively) but the correla
tion with multimers was significant for rare 
alleles only (r=0.329, d.f. 13, P<0.116 and 
r = 0.506 , d.f. 13, P < 0.0 2 7) .
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(2) Total number of alleles: A significant

correlation exists between the total number 

of alleles and the number of rare alleles 

because one is included in the other data 

set. The mean value of Pearson's coefficient 

for this correlation was significant at 0.1 

per cent level of probability (r=0.803, d.f.

23, P<0.001). But since it is an analysis of 

cause-effect relationship, the results can be 

appreciated better if some variables which 

affect both of them simultaneously are stan

dardized. The partial correlations by 

controlling the sample size and mean amount of 

heterozygosity, individually and combined, 

yield similar high relationships, although

in monomers, controlling by sample size is 

non-significant.

(3) Heterozygosity: Since the mean amount

of heterozygosity per locus in any population 

is a function of the total number of alleles,

a correlation between the two is to be 

expected. According to the stepwise mutation 

model and the intragenic recombination model, 

the introduction of new alleles will depend 

upon the frequencies of existing alleles, 

which is measured by heterozygosity. In the 

present data the estimates of mean hetero

zygosity and its variance are 0.042 and 0.006 

respectively. Spearman's rank order correlations
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for heterozygosity with rare alleles and 
total number of alleles are significant 
(r=0.498, d.f. 23, P<0.01 and r=0.852, 
d.f. 23, P<0.01 respectively). The product 
moment correlation between number of variants 
and heterozygosity shows a negative correla
tion (significant at 1 per cent level of 
probability) if the values are controlled 
for total number of alleles. This suggests 
that the number of rare alleles as a 
function of heterozygosity or of the total 
number of alleles, as inferred from the step
wise mutation model, is misleading, particularly 
for low values of mean heterozygosity.
(4) Subunit number: Table 4.2 shows the
distribution of loci at which rare alleles 
were detected in terms of monomeric and multi
meric loci. Whereas about 60 per cent of 
the monomeric loci exhibit the presence of 
rare alleles the fraction is 40 per cent 
in multimers. The number of rare alleles 
per locus is also much higher in monomers 
than in multimers (1.00 agains.t 0.40 per 
locus: table 4.3). This indicates that a 
negative association between the number of 
subunits and rare alleles exists and for 
the log-transformed variables the present 
data shows a significant negative correla-
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tion (r-0.483, d.f. 23, P<0.007).

(5) Subunit size: Eanes and Koehn (1978)

obtained significant correlations between 

the subunit size and total number of alleles 

at enzyme loci in human populations. Since 

Harris et al. (1977) found no correlation

between subunit size and heterozygosity this 

suggests a direct relationship between sub

unit size and the number of rare alleles.

In the present data the correlation between 

the total number of alleles and subunit size 

is low but the number of rare alleles show 

a significant relationship (r=0.463, d.f.

23, P<0.01). The partial coefficient of 

correlation between the total number of 

rare alleles and subunit size is increased 

significantly when controlled for sample 

size (r=0.666, d.f. 22, PcO.OOl). It is 

clear that rare alleles are strongly 

correlated with subunit size when other 

factors are standardized.

4.2.2.2. Effect on mutation rates.

From the relationships outlined above, it is 

obvious that there are several factors which 

influence the number of rare alleles. I have, 

therefore, recalculated, the electromorph mutation 

rates from the data for Aborigines following the
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methods of Kimura and Ohta (1969) and Nei (1977).
Table 4.3 shows the relationship between the 

sample size and the estimated average mutation 
rates. The average number of rare alleles per 
locus is much higher in sample sizes above 3000 
than below 3000 (1.27 against 0.14). This results 
in a 9-fold difference between these two sample 
sizes when mutation rates are calculated by 
the method of Kimura and Ohta (1969). For the 
purpose of comparison, three categories of 
n>3000, n<3000 and all sample sizes were made.
The results show a systematic decrease in mutation 
rates in these respective categories.

The second important factor which operates 
to influence the incidence of rare alleles is the 
presence of polymorphism at a particular locus.
The difference between mutation rates for the 
polymorphic and non-polymorphic loci is almost 
twofold indicating the fact that the stepwise 
mutation model can be invoked to explain these 
differences (table 4.4). The difference between 
the multimer and monomer subgroups could not be 
given weight because of differences of sample 
sizes and the incidence of heterozygosity. The 
results in table 4.5 show the mutation rates per 
cistron/generation for three different categories 
of subunit size, each further subdivided into
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multimers and monomers. The pattern in the three 
categories is of systematic increase with larger 
subunit sizes. Multimers have consistently lower 
mutation rates as compared with monomers although 
the mean value of subunit sizes and sample sizes 
are similar.

4.2.3. Discussion.
From the observations outlined, it is obvious 

that the structural constraints and cistron sizes 
of enzymes, besides the role of sample size, 
determine to a large extent the relative magni
tudes of electromorph mutation rates. Any compre
hensive estimate of mutation rates for a population 
will thus have to be weighted for sample size and 
subunit size. In the present data, weighting by 
these factors leads to a general reduction in the 
average mutation rates because of the higher invar
iant nature of loci with low sample sizes and 
subunit sizes (table 4.6). Adjustment for amino- 
acid residues involved in surface interactions in 
multimers reduces further the average mutation 
rates. This gives new estimates for y per cistron 
per generation in Australian Aborigines as 6.19 x 
10 and 2.55 x 10 0 by the methods of Kimura and 
Ohta (1969) and Nei (1977) respectively. The 
differences between monomers and multimers are 
increased substantially after these modifications.
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In principle the interlocus variability in the 
mutation rates arising from the various cistron 
sizes should be minimized if we calculate the 
mutation rates per base pair per generation rather 
than per cistron per generation. The estimates of 
p per base pair per generation are given in 
table 4.7.

Despite the incorporation of modifications 
necessitated by the physico-chemical constraints 
of the molecules and sample sizes, differences 
among mutation rates still exist. For example, 
the relationship between the subunit size and 
mutation rates does not resolve into a simple 
linear function. Similarly, the differences 
between the multimeric and monomeric enzymes 
are increased when adjustments are made for the 
variation arising from the sample size and subunit 
size, yet the distinction between polymorphic, 
monomeric, large - subunit-enzymes and monomorphic, 
multimeric, smal1 - subunit - enzymes is clear cut.
This indicates that while making comparisons for 
electromorph mutation rates among various human 
populations, the number and type of loci included 
in the estimations should be taken into account.
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TABLE 4.7 UNADJUSTED ELECTROMOPH MUTATION RATES PER BASE PAIR

IN AUSTRALIAN ABORIGINES

Type of 
Enzyme

U per base
g

pair (xlO )
Kimura and 
Ohta's method Nei's method

Multimers 1.71 0 .87
Monomers 8.25 1.70

Total 4.11 1.56
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4.3. Hypergeometric Sampling and Estimation of 

Mutation Rate.

Recently Rothman and Adams (1978) have present

ed a statistical approach for estimating the average 

number of variants per locus in a population of 2N 

genes (K) from the number per locus in a sample (k) 

using the binomial approximation to the hyper

geometric probability distribution. The estimated 

value of K is then used to estimate indirectly the 

mutation rate from the number of singletons extant 

in the population Ks or Kg(l) where g(l) is the 

relative frequency of singletons in the population.

Using a binomial sampling equation, Chakraborty 

(1981) has given the conditional expectation of 

the number of rare alleles in a sample (k ) of 2n 

genes, where the total population size N is known, 

under the infinite alleles model of Kimura and 

Crow (1964). Using the method of moments estima

tion approach he has suggested the estimation of 

mutation rate indirectly from the observed number
A

of rare alleles in the sample (k ).

Neel and Rothman (1978) and Chakraborty (1981) 

have used the algorithms of Rothman and Adams (1978) 

and Chakraborty (1981) respectively to generate the 

estimates of mutation rate in 12 Amerindian tribes.

A comparison of the two sets of estimates reveals 

some interesting similarities as well as differ

ences .



184

The estimates of P by Rothman and Adams’ method 

(]Jr a ) are on an average 59% higher than those 

obtained by Chakraborty' s method • These

range from 0.71 to 13.83 fold .

The coefficient of correlation between the 

two sets of estimates is highly significant 

(r = 0 . 844 ; P<10-3) .

While the estimates by Chakraborty’s method 

show a significant negative correlation with 

population size (r-0.583; P=0.023), Rothman

and Adams' method yields nonsignificant values. 

However, no correlation is observed with 

sample size for both the sets of estimates.

The correlation between the sampling fraction, 

f=n/N, and the ratio of mutation rates,

RA is highly significant (r = 0.743; P<10 3) .

This observation leads to interesting intra- 

polation. For sampling fraction (f) of less 

than 5%, this ratio is 0.113; for the value 

of f between 0.30 and 0.40 the ratio becomes 

0.74.

From the above observations it is obvious that 

the estimation procedures of Rothman and Adams (1978) 

and Chakraborty (1981) lead to significantly differ

ent results, the differences among which are masked 

by averaging over a set of data. Three major points 

of difference between the two procedures can be 

recognized:
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1. The binomial approximations to the hyper
geometric probability distributions are made 
differently,

2. the two methods use different aspects of the 
data; while the Rothman and Adams’ method 
uses the singletons in the population after 
extrapolation, the method of Chakraborty 
utilizes only those rare alleles which are 
recovered in the sample, and

3. the two methods use different models. While 
Rothman and Adams use the equilibrium 
equation between the number of singletons 
gained and lost from the population for their 
procedure, Chakraborty uses the diffusion 
approximation of the infinite alleles model.
It may thus be important to find out the 

relative contribution of these three factors in 
producing the observed differences in the estimates 
of mutation rate. Using the data of Neel and 
Rothman (1978) and Neel (1978b) on 12 Amerindian 
tribes I have tried to illustrate the role of one 
or more of the above points in determining the 
differences between the estimates.

4.3.1. Formulations.
The extrapolation of the sample number of 

different alleles recovered in a sample (k) to 
its population value (K) was first suggested by 
Ewens (1972) using the Wright-Fisher infinite
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alleles model of Kimura and Crow (1964) as 
2n"1

K = k + / $ (x)dx (4.1)
2N~1

where 0(x)dx defines the frequency spectrum having 
the property that 4(x)dx is the mean number of 
alleles in the population with frequency in 
(x,Ax+x). The expression $(x) is given as

4(x)dx = 0x  ̂(1-x)  ̂ ^dx

The equation (4.1) solves approximately, as

K-k = 01og(N/n)-0(0-1)[2n_1-2N_1] (4.2)

where N is the effective population size (taken 
generally as the number of individuals in the 
reproductive age group, 15-44 yrs), n is the 
number of individuals sampled (or 2n genes) and 
0=4Ny is the scaled mutation rate. The equation 
(4.2) is rewritten in quadratic, as

K-k = 0A" - 0(0-l)lT

= 0(A"+B") - 02B" (4.3)

where A" = log (N/n) and B '  = [2n ^-2N

The method of moment yields an estimator of 0, 0^^, 
given by solving the root of the quadratic in (4.3) 
as
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K-k
(A" + B -4A" + B")2-4BK^k

2 B
(4.4)

the other root being inadmissible.

The solution (4.4) is, however, unattractive 

in that there are two, rather than one, unknowns 

in 0 and K. An alternative approach was taken by 

Nei (1977) who equated the number of alleles 

segregating in the population within the frequency 

range (2n ^ , q), where the upper limit of q is 

taken arbitrarily as 0.01 or 0.05, for the number 

of rare alleles ( q) recovered in the sample (k ). 

Accordingly, for the infinite alleles model, Nei's 

approach yields

q
k = / , 4>(x)dx
r 2n~1

- 0 log(2nq) - 0(0-l)(q-2n )̂

= 0 {log [ 2nql *-q -2n  ̂} - 02 (q-2n )̂ (4.5)

which is quite close to his sampling equation 

derived by using the infinite sites model as

k = 01og (2nq) r

It is also obvious, however, that for 2n>l/q the 

equation (4.4) de facto utilizes only rare alleles 

Besides, equation (4.4) utilizes that part of the 

information on the rare alleles in the population 

which are not detected in the sample. It is
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expected, therefore, that equations (4.4) and (4.5) 

should yield almost similar results for 2n>l/q.

To estimate K from the number of alleles in the 

sample, the extrapolation can be obtained by using 

the binomial approximation to the hypergeometric 

probability (Rothman and Adams, 1978). Following 

Lieberman and Owen (1961) the approximation has a 

simple solution, i.e.

K = k (1 -Z) “1 (4.6)

whe re

z = z g ( j ) ( i --------- ^ r r ) j
2N- 1 /

given that g(j) is the relative proportion of 

alleles represented by j copies in the population. 

Substituting in (4.3), we get

k Z(l-Z)"1 = K-k

= 6(A" + B') - 02B' (4.7)

A different approach is taken by Chakraborty 

(1981) to incorporate the sampling effects in the 

infinite alleles model. His binomial sampling 

equation is given as:

[2nq]
Z

j =1
r2n.„,l j-1 r, .0+2n-j-l ( . )0/ xJ (1-x) J
J 0

dx

- 0A-0 B (4.8)



[2nq] , [2nq] ,
where A = E j and B = £ (2n-j)

j=l j=l

I shall, however, use a slightly different form of 

(4.8), the justification for which is given in 

appendix A. However, this modified approach will 

still be referred to as Chakraborty's method in the 

text following. Accordingly

kr -6(A+D) - 02D (4.9)

where A is as defined in equation (4.8) and D is 

given as

n ~ 2ncl + 2nq (2nq +1)
2n_1 4(2n-l)2

Using Chakraborty’s (1981) sampling approach an 

estimate for the number of rare alleles in the 

population, not recovered in the sample, is given 

as

Kr-kr - eiog(N/n) (4.10)

which is quite similar to (4.3).

For single copy alleles in the sample (k ) 

the equation (4.8) has an exact solution, i.e.

k = 2n6/(2n+0-l) (4.11)

which yields an estimator of 8 as

0k = (2n-l)kg/(2n-kg)

- 189 -

(4.12)
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For singletons in the population K , Rothman and 

Adams (1978) have given an estimator of mutation

rate, yRA as

RA 2N [g (1) -
2N
 ̂ g(j) Pi q ] 

j = 1 3
(4.13)

where g(j) is the estimated relative proportion 

of alleles in the jth allelic state given that j 

is the number of copies by which an allele is 

represented in the population and  ̂ is the prob 

ability that an allele represented by j copies in 

the previous generation is represented now by 

singletons only. The estimator for k is described 

already by equation (4.6).

4.3.2. Results and discussion.

To illustrate the differences in the estimates 

of mutation rate generated by using various estima

tion procedures or different aspects of allelic 

data as input, the data on 12 Amerindian tribes 

given by Neel and Rothman (1978) and Neel (1978b) 

have been utilized. The summary of various statis

tics used is shown in table 4.8. Since the number 

of variants detected in a sample decreases with more 

conservative upper frequency limits, there are 

comparatively more observations available by the 

extrapolation approach of Rothman and Adams, than 

by the rare allele approach of Chakraborty (1981) 

or single copy approach indicated in this study .
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TABLE 4.8 SUMMARY OF THE NUMBER OF VARIANTS DETECTED PER 
POLYPEPTIDE IN 12 AMERINDIAN TRIBES (BASED ON
DATA IN NEEL AND ROTHMAN , 1978 AND NEEL, 1978b)

Tribe
Effective 
population 
size (x2)

2Ne

Average 
No. of 
genes 
Sampled

2n

Alleles sampled

k k ks r t
- ** K-k

Ayoreo 1,440 194 - - - -

Baniwa 1,440 362 0.0370 0.0370 0.0741 0.0674

Cayapo 1,440 524 - 0.0357 0.0714 0.0412

Guayumi 28,800 466 0.0370 0.0370 0.0741 0.0734

Kraho 576 184 - 0.0357 0.0357 0.0244

Macushi 3,840 480 0.0370 0.0741 0.1111 0.2119

Makiritare 1,440 496 - 0.0741 0.0741 0.0459

Panoa 17,280 320 - - 0.0370 0.4704

Piaroa 2,880 140 - 0.0417 0.0417 0.2031

Wapishana 1,920 590 0.0714 0.1071 0.1786 0.1280

Xavanate 1,632 312 0.0769 0.1538 0.1538 0.1892

Yanomama 14,400 1,920 0.0357 0.0638

* k , singletons; k , rare alleles; k , all private alleles s r t
* * Number of alleles in the population NOT included in the sample
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These differences become more significant when the 
data are on small sized populations with comparat
ively more private polymorphisms.

Four different estimates of mutation rate for 
each of the 12 Amerindian tribes are shown in table
4.9. The estimation procedures used are those of

/\ /\

Rothman and Adams (y^) , Chakraborty (yrnAV) ,CHAK
singleton approach (ŷ  ) and the Ewens’ approxima-

/s s
tion equation • In addition, estimates
utilizing Chakraborty?s method is extended to all

A

the alleles detected in the sample (yv ).
kt

With singletons as input the estimates of
1̂  and y ^  exhibit more than three-fold difference
s _5 in the average estimates (0.50x10 per locus/

generation against 1.71x10  ̂ per locus/generat ion).
These differences are due partly to the lack of
recovery of singletons in certain tribes. For five
tribes with non-zero values of k , the average
estimates become respectively 1.20x10  ̂ per locus/
generation and 2.59x10  ̂ per locus/generation. The
average estimates do not show much variation
especially when we realize that the extrapolation
approach of Rothman and Adams leads to more
assured recovery of Ks values. Nine of the twelve
tribes yield estimates of yCHAK with an average

-5over all the tribes of 0.78x10 per locus/genera
A

tion. In comparison the estimates for the y^_^ 
exhibit an average value of 1.36x10  ̂ per locus/
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5TABLE 4.9 ESTIMATES OF MUTATION RATE, y (xlO ) FOR TWELVE 
AMERINDIAN TRIBES OBTAINED BY USING DIFFERENT 

ESTIMATION PROCEDURES

Tribe

Chakraborty's binomial Rothman and Adams
approximation binomial approximation

h s r \ y
R-A

y
K-k

1 . Ayoreo - - - - -

2 . Baniwa 1.28 0.70 0.44 2.06 1.69

3. Cayapo - 0.55 0.41 1.64 1.41

4. Guayumi 0.06 0.03 0.02 0.83 0.45

5. Kraho - 2.06 0.60 2.19 1.85

6. Macushi 0.48 0.46 0.24 1.76 1.33

7 . Makiritare - 1.13 0.42 1.75 1.49

8. Panoa - - 0.02 0.61 0.34

9. Piaroa - 0.72 0.15 1.78 1.16

10. Wapishana 1.85 1.13 0.75 3.35 2.82

11. Xavanate 2.35 2.57 0.84 4.40 3.50

12. Yanomama 0.50 0.78 0.33 1.71 1.36

Average 0.50 0.78 0.33 1.71 1.36
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generation. The respective averages for tribes with
~ _ 5non-zero values of k are 1.04x10 per locus/ 

generation and 1.76x10  ̂ per locus/generation.
Two types of methodological differences are

A A

discerned between the estimators y ̂ ^ and y^_^.
These are the use of different aspects of allelic 
data and the choice of different mutation models. 
Since Neel and Rothman (1978) used the- same value 
( 0.2096) of g (1) - Eg(j)Pj-̂  for all the tribes in
their calculations, it is only to be expected that

/\ /\

the proportion of bj(_g/hp_y\ should be more or less 
similar over all the tribes. We observe, however, 
this proportion to vary from 0.54 - 0.86 with an 
average value of 0.70. While the deviation from
unity indicates that the choice of singletons

/\

yields higher values of the variation in
/\

the ratio h]<_ p/hg_/\ is unexplainable. It may, 
however, be noted that this mutation rate ratio 
is positively correlated with the sampling fraction 
(r=0.895 ; P<0.001) .

A comparison of the role of singletons vs. rare 
alleles in raising the estimates of y is also made 
for the.binomial approximations given by Chakraborty 
(1981). For five tribes with non-zero values of

k , the mean mutation rates for y^ and ŷ ÂIC are
- 5 S - 51.20x10 per locus/generation and 0.98x10 per

locus/generation, respectively which indicates
that the choice of singletons does yield higher
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estimates in comparison with use of rare alleles.

Similarly, for the nine tribes with positive k ,

the value of y^ (0.98x10  ̂ per locus/generation) 
r

is higher than that obtained by using all alleles,

ŷ  (0.43x10  ̂ per locus/generation).
t  ̂ ^

The ratio b*^^k/^RA’ h°wever> shows much 
wider range than the ratio y^_y/Pj^. The 

respective ranges with the average values are 

0.04-0.94 (0.47) and 0.54-0.84 (0.69). While some
/S /N

of the differences between an<l can be

atrributed to the initial advantages in using the 

extrapolation approach of Rothman and Adams (1978), 

there still exist significant differences between 

the two estimates for individual populations.

The differences produced by the choice of 

the branching process model by Rothman and Adams 

and the diffusion approximation approach by 

Chakraborty can be explained, as follows:

If we approximate Chakraborty's equation,

., -1[ 2nq] [ 2nq ] ? [2nq]
Zk. - 0 Z. -0 Z3 3 3 = 1
3=1 3 = 1

for small 0, to

[2nq] [2nq] 1
Zk. - 0Z j

J J
3=1 3=1

(4.13)
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Then 0 can be replaced by as

Ek . = k.E i 1 1 J
. -1 (4.14)

By scaling k^ = 1 and assuming that the relative 

frequencies of various allelic states are the same 

in both the sample and the population, we expect

Ek Zj
where k. is the observed scaled value of k..J J
For Yanomama tribes, by using the branching

process argument, Rothman and Adams (1978) have

provided the values of kj . Summing over the first

ten terms, the two values are 
10
Ek. = 2.086 J
j=l

10-1Ej = 2.929 
j = 1

which indicates that the estimates of \ i by Rothman 

and Adams' method will be on an average 40 % higher 

than that of Chakraborty. These differences are, 

however, systematic and do not indicate the cause 

of the presence of outliers nor the significant 

correlations of with the sampling

fractions.

One of the main reasons for the presence of 

outliers could be the choice of different approach-
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es to the approximations of the hypergeometric 
probability. It is known that the binomial 
approximation to the hypergeometric sampling 
becomes poorer with rise in the sampling fraction. 
By virtue of the symmetry of the hypergeometric 
probability, this applies to the allelic frequen
cies too. Besides, to obtain best approximation 
for a particular value of the sampling fraction 
and the allelic frequency one should use the 
smallest value of the cumulative binomial probab
ility distribution, denoted by E(a,b,p). This 
smallest value is realized when a is the smallest 
(Lieberman and Owen, 1961).

When the approximation is made over the whole 
range of allelic frequency, b (0,1), for a fixed 
value of the sampling fraction, f, there are two 
stages in approximations, i.e. when f<p and when 
f>p. By using the same approximation over the 
whole range of p, one obtains poor approximation 
to the hypergeometric; the extent of this over
estimation of E (a, b, p) being related to the 
value of f.

Both Rothman and Adams (1978) and Chakraborty 
(1981) have made these approximations in their 
sampling algorithms over the full range of p.
Their approaches are, however, directly opposed to 
each other. While Rothman and Adams use E (p,b,f) 
in their formulation, Chakraborty (1978) utilizes
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E(f,b,p). For small f, Chakraborty's approach 

admits less error than that of Rothman and Adams.

For large F, it is vice versa. These poorer approxi

mations in turn produce outliers for small values of 

f. Since in the data of Neel and Rothman (1978) 

the highest value of f is 0.364, there are few 

outliers observed for higher values of f. These 

differences are seen in more than an order of magni

tude difference in y for f about 2% and a spurious 

significant correlation between and f

produced by the lack of values for higher ranges 

of f. However, it is not clear if these differen

ces are accentuated by the smaller values of b, 

which are 2n and 2nq respectively by the two 

methods.

These observations lead to the question as 

to which method is more appropriate and whether the 

estimates generated by one method are over-estimates 

or under-estimates. The results indicate the 

desirability of choosing a method which reduces 

the number of outliers in the estimates. The use 

of equation (4.4) and (4.7) may provide such

estimates.
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Chapter 5

RELATIVE ELECTROMORPH MUTATION RATES 

5.1. Introduction.

In the previous chapter, attention was drawn to 

the positive correlation between electromorph 

mutation rate and subunit molecular weight using data 

for Aboriginal populations in Australia. The same 

data was used to show a negative correlation with the 

number of subunits in the functional enzyme and also 

to illustrate the effect of sample size on the ability 

to detect electromorphs in the population. The 

analysis of electromorph mutation rates has now been 

extended to include data available from intensive 

surveys carried out by several different investigators 

for a number of major human populations: a total of

more than 800,000 single locus tests has been analysed.

Two different stragegies have been employed in 

examining the factors influencing electromorph 

mutation rates. In the first, the relationships of 

sample heterozygosities, or mean single locus heter- 

zygosities over a set of related populations, are 

analyzed, using both parametric and non-parametric 

correlation methods. In the second, the analysis is 

restricted simply to the relationship between the 

number of different electrophoretic alleles and the 

size and structure of protein molecules.

Using heterozygosity as a measure of genetic
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variability the dependence of neutral mutation rates 
on subunit molecular weight was demonstrated by 
Brown and Langley (1979), Turner et al.
(1979) , Ward (1978) and Koehn and Eanes (1977, 1978) 
for various vertebrate and invertebrate populations. 
This class of relationship, however, was not demon
strated in single species tests of Colias (Johnson, 
1979), Drosphila (Johnson, 1979; Voelker et al.3 
1980b) and man (Harris et al.a 1977; Nei et at 
1978; Bhatia, 1980). However, in single species 
tests, Harris et alm3 (1977 ), Ward (1977) and Bhatia
(1980) have shown heterozygosity to be negatively 
correltated with subunit numbers.

Using the second strategy, a relationship 
between the average number of different alleles per 
locus and subunit size was demonstrated by Eanes 
and Koehn (1978) and Bhatia (1980) in pooled data 
on human populations and Australian Aborigines 
respectively. This class of relationship is, 
however, difficult to evaluate, as the non-paramet- 
ric estimates of the number of electrophoretic 
alleles depend critically upon sample size (Nei, 1977; 
Eanes and Koehn, 1978; Rothman and Adams, 1978; 
Bhatia, 1980) and upon the experimental techniques 
employed to discriminate allelic variants (Johnson, 
1977).

Variability in the estimates of mutation rate 
from protein data, corresponding to the variation 
in subunit size, has been shown to follow the gamma
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distribution (Nei, et al. 3 19 76b;
Fuerst et aZ.,,1977; Zouros, 1979). Zouros (1979) 
has used these relationships to generate estimates 
of relative electromorph mutation rates (REMR) in 
various natural populations. Using total hetero
zygosity as input, he found the REMRs to vary more 
than 500 times over a set of protein loci.

Because of the lack of correlation between 
heterozygosity and subunit size, extension of 
Zouros' approach to human data will have only a 
limited value. Instead the data on rare allele 
variability may be used to generate relative 
estimates of mutation rate because of its known 
dependence on subunit molecular weights. In the 
present chapter, therefore, rare allele variability, 
expressed both as rare allele heterozygosity as 
well as the number of rare alleles, is utilized 
to estimate the REMRs.

5.2. The Laboratory Data
In this analysis data on population surveys 

for electrophoretic variants in 10 major ethnic 
groups have been included. The surveys on 
Australian Aborigines, Melanesians, Iranians and 
South Asian tribal populations are from published 
and unpublished sources of data in this laboratory. 
The surveys adopted from other sources are: 
Amerindians (Neel, 1978b)» Japanese (Neel et al.3 
1978); GPT data from Ishimoto and Kuwata, 1974);
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English (as compiled by Neel et al3 1978; Welch 
et al3 1975 for GPT data); Aymara Indians (Schull 
et al3 1978) ; South African Khoisan and Negroid 
populations (based on work by Professor T. Jenkins 
and his collaborators and compiled by Bhatia et al. 
in preparation).

The data on Melanesians is subdivided into 
two linguistic groups, namely Austronesians and 
non-Austronesians, because of their different 
origins (Wurm, 1975a). Rare alleles, assigned 
on the basis of higher frequency to one language 
group, have been excluded from the other.

The data have been compiled for 27 protein 
loci (17 multimers and 10 monomers) and are 
listed in table 5.1. The multimeric loci are all 
dimers except the two LDH loci which are tetramers. 
Subunit molecular weights are taken from the 
tabulations of Darnall and Klotz (1975) and 
Hopkinson, et al. 3 (19 7 7 ).

A rare allele has been designated here as 
one with less than 20 copies in 1,000 determinations. 
For each population a separate list of rare alleles 
was prepared. Rare allele heterozygosity (H ) is 
defined here as the number of copies contributed 
by rare alleles/1,000 determinations. The second 
parameter, the number of rare alleles (K̂ ) is 
simply a count of different rare alleles recovered 
at each locus. For some purposes is specified 
per 1,000 determinations.
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TABLE 5.1 INTERLOCUS VARIABILITY IN THE FREQUENCY OF RARE ALLELES AND ESTIMATES OF RELATIVE

ELECTROMORPH MUTATION RATES (REMR)

LOCUS
No. of 
determin- 
ations

Rare alleles Rare allele 
heterozygos
ity <Hr)

No. of 
different 
rare

alleles (K )

Relative electromorph 
mutation rates (REMR)

Number Copies
REMPfl.) REMB(2)

A B C D-— x 1000 E-- x 1000 p °i r EiA A F----ID,i i

MULTIMERS

Hb- a 49,191 11 170 3.46 0.224 0.0477 0.0256

Hb- 8 49,191 11 39 0.79 0.224 0.0109 0.0256

s°d a 30,327 2 11 0.36 0.066 0.0050 0.0076

GLO 5,658 0 0 0.00 0.000 0.0000 0.0000

EsD 18,993 3 4 0.21 0.158 0.0029 0.0181

MDH 33,186 8 153 4.61 0.241 0.0635 0.0277

ldha 34,886 13 47 1.35 0.373 0.0186 0.0427

LDH0 34,886 8 71 2.04 0.229 0.0281 0.0262

Hp 38,563 8 9 0.23 0.207 0.0032 0.0237

GOT 8,352 4 4 0.48 0.479 0.0066 0.0548

Pep A 32,853 15 59 1.81 0.457 0.0250 0.0523

ICDg 21,994 9 14 0.64 0.409 0.0088 0.0468
Pep D 7,669 4 49 6.39 0.522 0.0880 0.0597

GPT 14,769 7 23 1.56 0.474 0.0215 0.0542

6PGD 46,884 18 188 4.01 0.384 0.0552 0.0439

Cp 23,244 14 115 4.95 0.602 0.0682 0.0689

PHI 28,060 25 103 3.67 0.891 0.0505 0.1020'

MONOMERS

ACP 46,855 7 45 0.96 0.149 0.0133 0.0171

AK^ 38,385 2 11 0.29 0.052 0.0040 0.0060

“ l 26,889 5 15 0.56 0.186 0.0077 0.0213

c a 2 17,502 2 40 2.29 0.114 0.0316 0.0130

PGK 17,700 2 112 6.33 0.113 0.0872 0.0129

PGM^ 49,605 27 96 1.94 0.544 0.0267 0.0623

Pep B 33,310 15 118 3.54 0.450 0.0488 0.0515

p g m 2 48,550 14 304 6.26 0.288 0.0862 0.0330

Alb 30,264 9 276 9.12 0.297 0.1256 0.0340

Tf 38,091 23 192 5.04 0.604 0.0694 0.0691
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The relationships between rare allele varia
bility and molecular structure were tested using 
linear regression methods. Whenever necessary, the 
variables were log transformed to equalize and 
normalize the variances. Both Pearson’s product 
moment and Spearman’s rank order correlations were 
computed to test the correspondence between differ
ent variables.

5.3. Results.
Table 5.1 shows the distribution of the total 

number of rare alleles (B) and total number of 
copies (C) and sample sizes (n), for the 27 protein 
loci. Columns D and E of the table show the 
observed estimates of rare allele heterozygosity 
(H ) and number of rare alleles (K̂ ) per 1000 
determinations respectively. The weighted mean 
subunit sizes, sample sizes and rare allele hetero
zygosities for various classes of subunit size 
are shown in table 5.2.

5.3.1. Interlocus variability.
5.3.1.1. Number of rare alleles (K ).

A total of 266 different rare alleles, with 
an average recovery of 1 rare allele for every 
3,016 determinations, was detected. The range is 
from none in 5,658 determinations for glyoxalase 
(GLO) to one in 1,122 determinations for phospho- 
hexose isomerase (PHI). Despite a singificant
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correlation between the recovery of rare alleles 
and sample size (r=0.544; P<0.002), sampling error
is unlikely to explain the failure to recover 
variants for glyoxalase (GLO). The possibility of 
testing 5,658 individuals without detecting a variant 
is very low (P<0.001).

The mean unweighted number of rare alleles 
(K ) per 1,000 determinations in monomers and multi- 
mers are 0.279+^0.088 and 0.349+_0.053 respectively.
The difference is statistically insignificant, 
thereby discounting the role of quaternary structure 
in introducing new alleles.

There is a significant positive correlation 
between the number of different rare alleles (K ) 
and subunit size (m). The values of r^m for total, 
multimeric and monomeric loci are shown in table 5.3. 
Only 34% of the variability in the number of differ
ent rare alleles is explained by variability in 
subunit size. This proportion rises to 55% when the 
partial correlations are computed, after controlling 
for sample size. Considered separately, both 
multimers and monomers show better correspondence
with their respective molecular weights (see table

25.3). The value of r for multimers and monomers 
is increased to 74% and 57% respectively, when 
adjustments are made for sample size as control 
variable. The estimated parameters for the

A

regression line y = a + bX are: a = 0.02402 and
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TABLE 5.3 CORRELATION COEFFICIENTS (r) BETWEEN MOLECULAR WEIGHT, 

SAMPLE SIZE AND PARAMETERS OF RARE ALLELES AND THE

PROPORTIONS OF VARIANCE EXPLAINED BY MOLECULAR WEIGHT 
2VARIATION (r ).

Type of 
Protein

Sample size Subunit size
Parameter r 2r r 2r

Number of rare Multimers 0.5149* 0.2651 *t0.5118 0.2619

alleles Monomers 0.6269* 0.3930 * +0.6402 0.4099

(K ) r Total
•k k

0.5441 0.2960 * * *0.5834 t 0.3403

Rare allele Multimers 0.0678 0.0046 0.4314* 0.1861

heterozygosity Monomers (-)0.1652 0.0273 **0.7511 0.5641

(H ) r Total 0.0462 0.0021 * *0.6411 0.4110

* 0.01<P<0.05
* * 0.001<P<0.01
* * * P<0.001
•j- *  *  *Partial correlations after controlling for sample size are 0.8450 

* * * * * *0.7590 and 0.7434 for multimers, monomers and total proteins

respectively
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A A

b = 0.00023. The small value of b is due to the 
units used for expressing molecular weights. The 
scattergram for the values at each locus is shown 
in Fig. 5.1.

5.3.1.2. Rare allele heterozygosity (Ĥ ) .
The estimates of rare allele heterozygosity 

(H ) are not related to fluctuations in sample size 
(r=0.046; P>0.410) or to the number of different
rare alleles (r = 0.272; P>0.0 8 5) (the rank order 
correlations for the latter are, however, signifi
cant). However, a significant positive correla
tion does exist with subunit size (r=0.641;

2P>0.001) with r explaining more than 41% varia
bility contributed by molecular weight. These 
results are. specially significant in view of the 
lack of correlation between total heterozygosity 
and molecular weight in human populations. Both
multimers and monomers similarly exhibit signifi-

2cant correlations, although the value of r in 
multimers is only 18% against 56% for monomers 
(see table 5.3).

The unweighted mean values of rare allele 
heterozygosity (H ) 2.70^0.47, 2.15+0.48 and 
3.63+0.93 for total, multimeric and monomeric 
loci respectively. In contrast with the results 
derived from the number of rare alleles (K ) per 
1,000 determinations, the results for rare allele 
heterozygosity exhibit significant differences
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Fig. 5.1 Relationship between the number of 
different rare alleles per 1,000 
determinations at a locus and the 
respective subunit molecular weights 
in human populations.
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between monomers and multimers. The role of 
molecular constraints present in multimers in 
reducing genetic variability is discernible in 
this parameter.

The scattergram for the values of rare allele 
heterozygosity (H ) and subunit molecular weight 
at each locus is shown in Fig. 5.2. The linear 
regression is

A

y = -0.84998 + 0.00009X

5.3.1.3. Relative electromorph mutations rates (REMR).
Two different estimates of relative electromorph 

mutation rates (REMR) were obtained.
REMR(l) represents the scaled value of rare 

allele heterozygosity, so that for any locus
II

REMR (1) = j - ~ -

r
and REMR(2) represents the scaled value for the 
number of different rare alleles, so that

K
REMR (2) =

r
The values of REMR(l) and REMR(2) are given 

in the last two columns of table 5.1. Although 
both the estimates of REMR show positive correla
tions with subunit molecular weight and have 
similar rankings, the variability exhibited by 
the two methods differs widely. After excluding 
the invariant locus (GLO), the ratio between the 
lower and upper values for REMR(l) and REMR(2) is
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30.1 and 16.7 respectively. The most variant locus 
is albumin (Alb) for REMR(l) and phosphohexose 
isomerase (PHI) for REMR(2).

The ratios of REMR(l) and REMR(2) for multimers 
are 16.00 and 13.42 and for monomers, 30.14 and 10.38 
respectively. In comparison thcratio of minimum to 
maximum subunit size is only 4.13 and 6.00 in multi
mers and monomers respectively. Thus the variability 
in REMRs is 3-5 times more than the observed varia
bility in subunit size.

5.3.2. Interpopulational variability.
Since the data on various loci were compiled 

from different population groups, interpopulation 
comparisons have been made also. Table 5.4 shows 
the number of different rare alleles and rare 
allele heterozygosities in 12 human populations and 
the corresponding values of REMR(l) and REMR(2).

5.3.2.1. Number of rare alleles (K ) .
There is a large amount of variability in the 

detection of rare alleles among different popula
tions. For example, in Iranians a new variant 
was detected for every 687 determinations whereas 
in non-Austronesians a rare allele was recovered 
for every 9,162 determinations. Although the 
detection of rare variants is a logarithmic 
function of sample size, it is interesting to 
note that there exists a negative correlation
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between the sample size and number of different rare 
alleles per 1,000 determinations (r=-0.560 P<0.029).
At present it is difficult to give an explanation 
of this result.

As shown above, the recovery of rare alleles 
for the total population does not differ signifi
cantly between monomers and multimers. However, 
although the values are significant for the 
individual populations of Japanese, English, 
Australian Aborigines, S. Asian tribes, S. African 
Negroes and Aymaras, in the English and S. African 
Negroes, multimers show more rare«variants; monomers 
are in excess in the other four (table 5.5).

5.3.2.2. Rare allele heterozygosity (H ).
Significant heterogeneity in the interpopula

tion variability of rare allele heterozygosity (H ) 
was detected over individual loci except GLO (no 
variant recovered), EsD and GOT. Coincidentally, 
the recovery of rare alleles at these loci is, in 
general, rather low. Chi-square heterogeneity 
over populations is also found to be significant 
for weighted mean values for multimeric, mono
meric and all loci combined. The mean values of 
rare allele heterozygosity (H ) in different 
populations range from 0.76 in English to 4.98 
in South African Khoisans.

It has been pointed out previously that 
there is a significant difference in rare allele
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TABLE 5.5 A COMPARISON OF RARE ALLELE HETEROZYGOSITY (H ) AND NUMBER OF RAREr
ALLELES (K ) BETWEEN MONOMERS AND MULTIMERS FOR 12 HUMAN 

POPULATIONS AND TOTAL SAMPLES

Population
Rare Allele Heterozygosity Number of rare alleles per 

1000 determinations
Multimers Monomers x2 Multimers Monomers

Amerindians 2.53 3.19 5.76* 0.192 0.178

Japanese 1.30 4.20
* *

57.57 0.433 0.659

English 0.78 0.74 0.04 0.453 0.316

Australian Aborigines 1.99 3.27
**

10.54 0.166 0.267

Melanesians 2.41 6.00 214.00** 0.152 0.121

Austronesians 1.95 1.58 1.52 0.193 0.187

Non-Austronesians 1.99 5.14
* *

128.33 0.130 0.076

S. Asian (Sch. Tribes) 2.49 1.15 1.80 0.244 0.401

S. African Negroes 1.83 0.46
**

16.26 0.593 0.153

S. African Khoisan 7.46 1.96
**

25.61 0.432 0.392

Aymaras 2.18 2.46 0.26 0.396 0.509

Iranians 4.36 2.68 1.95 1.598 1.217

Total sample 2.21 3.48
♦ *

143.58 0.249 0.238

0.01<P<0.05 

P<0.01
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heterozygosity between monomers and multimers for 

the total sample. The same effect is apparent 

when considering individual populations; signifi

cant differences being present between monomers and 

multimers for 7 out of 12 populations. In the two 

African populations, however, the rare allele heter- 

zygosity is significantly higher in multimers. The 

reason for these differences is not clear.

5.3. 2.3. Relative electromorph mutation rates (REMRs).

Table 5.4 shows the range of interpopulational 

estimates of REMR(l) and REMR(2). The range of 

REMR(l) is less than an order of magnitude; REMR(2) 

shows slightly more variation. The differences are 

smaller, in comparison with the effective popula

tion sizes of the groups in question.

No correspondence between monomers and multi

mers was detected forREMR(l) across 12 populations 

(r=-0.036; P>0.485). The results indicate lack 

of any systematic pressure on the frequency of 

mutation rates in different human populations, 

with regard to protein structure.

5.4. Discussion .

From the results outlined above it is appar

ent that in human populations sampled on an ade

quate scale, the size of molecules, and whether 

the intact molecule consists of a single subunit 

or of subunits combined together in multimers, has
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an important influence on the relative magnitudes 
of electromorph mutation rates. The range of mean rare 
allele heterozygosity for these different categories 
is 3-4 times for both multimers and for all loci, 
when molecules with similar subunit molecular 
weights are compared. Monomers, on the other hand, 
reveal a larger variability, although the range 
is still less than ten-fold (see table 5.2).

Analysis of variance among categories reveals 
that this variability is real rather than stochastic 
(F=6.96; P<0.01) but the various parameters of
rare allele variation, when normalized for subunit 
size, indicate non-significant variation among 
different categories. The molecules, in the 
middle range of subunit size, however, reveal least 
variability.

Some of the results given here are at variance 
with the previous analysis of data in the previous 
chapter on Australian Aborigines. Differences in 
mutation rate of more than an order of magnitude 
between multimers and monomers, after weighting 
for sample size, subunit size and adjusting for 
the proportion of aminoacids involved in molecular 
surface interactions in multimers, in the data on 
Australian Aborigines are not seen in the present 
data. The simplicity of proportionality between 
the molecular size and heterozygosity assumed in 
this and the previous chapter is, however, question-
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able, especially when individual aminoacids, 
nucleotides and sites within cistrons are known to 
show variability in their substitution rates 
(Dayhoff et al, 1978; Kimura, 1979; Go and 
Miyazawa, 1980).

Although the magnitude of variability of the 
relative electromorph mutation rates estimated 
from rare allele heterozygosity and number of 
different rare alleles, is much smaller than that 
found by Zouros (1979) using total heterozygosity, 
the differences between the ranges of subunit size 
and REMRs are still significant. It appears that, 
since rare alleles are less likely to be operated 
upon by systematic negative or positive selection, 
comparatively large numbers of rare alleles may be 
maintained by slightly deleterious mutations 
(Ohta, 1976; Li, 1978, 1979a) or bottle-neck 
effect (Nei, 1976; Nei and Li, 1976). Although 
Bhatia (1980) and Chakraborty et al, (1980) found 
no correlation between the number of different 
rare alleles and total heterozygosity, the effect 
of intragenic recombination (Strobeck and Morgan, 
1978; Morgan and Strobeck, 1979) on loci with 
unusually high mutation rates may.be another 
factor contributing to this variability. The 
larger variability seen in the size of mRNAs 
(Sommer and Cohen, 1980) may also decide event
ually the total amount of mutations obtained at 
a particular locus.
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The range of interlocus variability in the 
estimates of is, in general, much higher within 
populations than in the aggregate data. For 
example, Harris (1978) has recorded a 150 fold 
range in the values of in English populations. 
The data presented here shows similar ranges in 
other major world populations. Genetic drift and 
geometric distributions of the copies of rare 
alleles (Rothman and Adams, 1978) are two of the 
reasons which can be invoked to explain this much 
larger variability. It may be relevant to point 
out here that only 6 out of 12 populations show 
significant correlations between the molecular 
weight and rare allele heterozygosity which 
indicates clearly that the relationship cannot 
be demonstrated unequivocally at the level of 
individual populations. Besides, recent fluc
tuations in population sizes may also affect 
these individual population correlations (Li, 
1979b) .

The distribution of REMRs does not give a 
good fit to either a gamma or lognormal distri
bution. Caval1i-Sforza and Bodmer (1971) and 
Yasuda (1973) have examined mutation rates 
using a lognormal and a gamma distribution 
respectively. Nei et al.} (1976 b) ,Fuerst et alm3 
(1977), Chakraborty et al3 (19 78), Zouros (1979) 
and Chakraborty et al,s (1980) have shown a gamma
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distribution of mutation rates in proteins supported 
with similar evidence from distribution of protein 
subunit sizes. Sommer and Cohen (1980), however, 
found that the frequency distribution of subunit 
molecular weights, is well described by a lognormal 
distribution. While the subunit molecular weights 
of the loci included in the present study do, as 
shown by non-significant values of Pearson's 
statistics for their log values, follow lognormal 
distribution, the results for REMRs are not so well 
described by this distribution. One possibility 
is that compound distributions, which may arise 
from substituion processes at nucleotide level 
and distribution of cistron sizes, are involved.

It is interesting to consider if there exists 
any interpopulational correspondence in the single 
locus estimates of rare allele heterozygosity.
Since the amount of normalized identiy (I) between 
any two distinct populations is negligible for 
rare alleles, the existence of such correlations 
must be a function of slightly deleterious muta
tions (Ohta, 1976) or variable mutation rates 
(Chakraborty et al3 1978). The significance of 
this correlation can be tested using normal tests 
since the value of r follows a normal distribu
tion for 1=0 (Chakraborty et al3 1978). The 
existence of such a relationship can be seen in 
the significant correlations between single locus 
rare allele heterozygosities of two samples
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obtained from the same Japanese population by Neel 
et al (1980a). In the present study 13 of the 66 
possible estimates of the coefficient of correlation 
for single locus rare allele heterozygosities among 
12 populations are significant. Since half of the 
populations show significant correlations between 
rare allele heterozygosity and molecular weight, 
from the foregoing discussion it could be expected 
that 15 of the 66 pairwise comparisons will show 
significant correlations. The close approximation 
of the observed and expected number of significant 
correlations is encouraging.

Eanes and Koehn (1977) , Chakraborty and Fuerst 
(1979) and Chakraborty et a\3 (1980) suggest that
the correlation between the number of different 
alleles and molecular weights is generally higher 
than the correlation between molecular weight and 
heterozygosity. Chakraborty et a l (1980) confirm 
theoretically that this is expected to be so. For 
large sample sizes, they expect these correlations 
to be higher because of the inclusion of slightly 
deleterious mutations. For rare alleles, over 
sufficiently large sample sizes, this study shows 
the results to be otherwise for monomers and the 
total number of loci (table 5.3). The partial 
correlations, after controlling the sample size, 
however, confirm the observations of Eanes and 
Koehn (1977) and Chakraborty et al%3 (1980) .
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The magnitude of interpopulation variability 
in REMRs recorded in the present study is smaller 
than the interlocus variability. One of the 
factors influencing this is the amount of varia
bility compressed within electromorphs which is 
related to Ny (Chakraborty and Nei, 1976; Nei 
and Chakraborty, 1976). Zouros (1979) has consid
ered these differences to be the relative 
estimates of effective population sizes (N ). 
However, demographic features of human populations 
have altered so much in the past and the errors 
involved in computing estimates of N are so 
large that I prefer to call these estimates 
interpopulational REMRs rather than relative 
effective population sizes (REPS).

The need for both absolute direct and 
indirect estimates of mutation rates in man from 
proteins has been emphasized by a number of 
workers (Neel, 1973, 1977; Neel and Rothman, 1978; 
Nei, 1977; Chakraborty and Roychoudhury, 1978; 
Dubinin and Altukhov, 1979; Tchen et al,3 1978 ; 
Bhatia et al3 1979; Bhatia et al3 1981; Bhatia, 
1980). But it will be quite some time before 
reliable estimates are generated. With the' 
accummulating evidence for the correlation of 
subunit size and molecular structure with mutation 
rates in animal and plant species, and now in man, 
estimates of relative electromorph mutation
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rates can be extrapolated to real problems in 
population genetic theory.
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Chapter 6 

CONCLUSIONS

The estimates of mutation rate obtained in the 

present study correspond well, on an average within 

the order of magnitude, with earlier estimates 

generated by Neel (1973), Nei (1977), Neel and 

Rothman (1978), Neel and Thompson (1978), Tchen et at. , 

(1978), Chakraborty and Roychoudhry (1978) and 

Chakraborty (1981). The thirty eight individual 

populations for which the mutation rates have been 

generated in the present study, however, show a 

wide range in the estimates. While no result is 

obtained for 15 of the 38 populations (39.47%) 

because of the lack of recovery of private 

variants, the range for 23 non-null results of 

P^_q and is 0.95x10  ̂ - 33.42x10  ̂ per locus/

generation and 0.65x10  ̂ - 35.33x10  ̂ per locus/ 

generation respectively. The respective mean 

values are 5.99x10  ̂ and 6.39x10  ̂ per locus per 

generation (see table 6.1).

For 12 Amerindian populations on which the 

mutation rates were estimated by Neel and Rothman
/s

(1978), the respective values of 0^_q and ^
6(with their ranges in parentheses) are 14.31x10 

(0-36.87xl0“6) and 17.09xl0“6 (0-44.05x10“6) per

locus per generation.
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TABLE 6.1 DISTRIBUTION OF THE MUTATION RATE 

IN 38 HUMAN POPULATIONS

Mutation
rate

(xlO6)

Observed number of populations

y
K-0

y
R-A

y
NEI

y
CHAK

y
ks

0.0 - 1.0 16 17 22 24 30

1.0 - 2.0 3 3 0 4 2

2.0 - 5.0 10 7 5 2 0

5.0 -10.0 6 4 4 2 2

10.0 - a 3 7 3 2 4

Total 38 38 34 34 38

Average
(pxlO6)

5.99 6.39 4.62 2.55 2.86
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The average estimates of y obtained in the 
present study are less than half those obtained 
by Neel and Rothman (1978). This is because the 
proportion of null results in the present series 
is much higher (39.47%) than in that of Neel and 
Rothman (1978) where only 1 in 12 populations 
(8.33%) did not yield any result. The relative 
lack of recovery of private variants is probably 
due to the smaller sample sizes for the popula
tions included in the present study than those 
utilized by Neel and Rothman.

The mumber of variants detected per locus 
decreases when more stringent criteria for 
defining an allelic variant, e.g. a rare variant 
or a singleton, are utilized. The average estimates 
of y by the rare allele methods of Nei (1977) and 
Chakraborty (1981) and the singletons approach of 
the present study are thus much smaller than those 
obtained by the other two methods (table 6.1).
These estimates also exhibit more variation in 
their inter-populational ranges, but this is 
reduced considerably with increase in the sample 
sizes.

The utility of the rare alleles and single- 
tons methods is enhanced when the data from 
different populations are pooled because of the 
more assured recovery of rare or singleton 
variants. The estimates of mutation rate
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obtained for five pooled samples of Australian 
Aborigines, Papua New Guineans, Scheduled Tribes 
of South India, Khoisans and Pygmies thereby 
exhibit much less variation (see table 6.2) 
although the mean estimates are still comparatively 
smaller than those obtained by the approaches of 
Kimura and Ohta (1969) and Rothman and Adams (1978).

One of the disadvantages in pooling the data 
in this form is that it completely disregards the 
underlying structure of populations and also lets 
the results be dominated by samples from a large 
population. According to Nei (1977) in the absence 
of deleterious genes, such a pooling should lead 
to estimates almost identical to those obtained 
through simple averaging. In the present study 
this is so (tables 6.1 and 6.2) except for 
This particular problem arises because of extra
ordinarily high estimates generated for certain 
populations where 2nq<2.718.

A comparison of the average of the results 
obtained in the present study with the weighted 
estimates (weighted by the population size) of
A A A

Pk_o > Pjyjpi» Pp-yv (Neel and Rothman^ 1978) and 
t t f l lAK  (Chakraborty 1981) as also the results on 
private polymorphisms (Neel and Thompson, 1978) 
indicates that the estimates of mutation rate 
are between 2x10  ̂ to 8x10  ̂ per locus/generation.



228

0
TABLE 6.2 ESTIMATES OF MUTATION RATES (yxlO )

IN VARIOUS POPULATIONS

yxlO^
P opu 1 ci t- j l  o n

yK-0 ^R-A PNEI PCHAK KKs

Australian Aborigines 13.40 16.63 3.58 3.08 6.51

Papua New Guineans 2.83 6.58 1.44 1.30 3.80

Scheduled Tribes 
of India

0.73 2.44 0.26 0.23 0.36

Khoisans 4.80 1.47 1.23 1.14 0.77

Pygmies 4.11 1.26 1.02 0.85 -

Average 5.17 5.68 1.51 1.32 2.29
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The above estimates of mutation rate are 
obtained on the basis of a single set of electro
phoretic conditions only. While a number of 
charge - change variants are not detected through 
these electrophoretic screens because of the 
coalescence of a different number of variants into 
a single electromorph (Nei and Chakraborty, 1976; 
Chakraborty and Nei, 1976), only about one third 
of the aminoacid substitutions will actually lead 
to charge changes (Shaw, 1965; Nei and Chakraborty, 
1973; Marshall and Brown, 1975). Adjusting for the 
silent substitutions of the latter type leads to 
threefold increase in the estimates of P for the 
populations reported earlier. The averages over 
the five pooled samples range from 3.96x10  ̂ to 
17.04x10  ̂by five different methods. These 
estimates may, however, be considered conservative 
since there is still no adjustment made for the 
coalescence within electromorphs.

One of the most difficult aspects of these 
indirect estimates of mutation rate is the 
determination of the actual size of the popula
tion in question(N). This is particularly difficult 
in the case of the highly nomadic Australian 
Aborigines, Khoisan and Pygmies and the more 
continuously distributed, densely settled popula
tions of South India and Papua New Guinea. In 
most of these populations no exact delimitation
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of the isolate is possible. The estimates of the 

actual population size utilized above may thus, at 

best, be considered to be only close approximations.

Estimates of 0, which are not affected by the 

actual population size, for various populations 

studied here are given in table 6.3. These 

estimates show much smaller variation over popula

tions than is noticed in the estimates of y 

(see table 6.2). Since all the estimation 

procedures utilized here assume a stationary 

population over a large number of generations, 

such estimates of N are inaccurate in demo- 

graphically retracting populations such as 

Australian Aborigines, Khoisans and Pygmies or 

in populations with positive growth trends like 

Scheduled Tribes of South India and Papua New 

Guineans. However, this is the only approach 

available at present.
/\ A

The ratio 0^ /0^ obtained from the values

given in table 6.3 shows the number of different

alleles encompassed within an e1ectromorph.

Since the single copy electromorphs are composed

of single alleles, the ratio is a good indicator

of the electrophoretically silent alleles. This

ratio exhibits a range of 1.38 to 4.40 alleles

with an agerave of 2.80 alleles per electromorph,

for an average value of 0^ = 0.2043. Nei and
s

Chakraborty (1976) have provided this ratio
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TABLE 6.3 COMPARATIVE ESTIMATES OF 6, IN VARIOUS POPULATIONSk

Population
Number of 

genes
< CD

K /9k •s tsampled
(2n) CD

 >

r+

6kr

CD
 >

cn

Australian Aborigines 5,214 0.0758 0.1150 0.2399 3.1649

Papua New Guineans 12,072 0.1192 0.1697 0.5239 4.3951

Scheduled Tribes 
of India

4,521 0.0549 0.1066 0.1669 3.0401

Khoisans 1,980 0.0655 0.1338 0.0908 1.3863
Pygmies 2,351 0.0494 0.0858 - -

Average 5,228 0.0730 0.1222 0.2043 2,7986*

zê  /zeuk k
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between the number of alleles and electromorphs 
expected for 1,000 genes and 0=0.1 and 0.2 as 
2.38 and 3.15 respectively. The estimates of

/s /\

mean ratio, 0̂  /0^ falls within the expected
range, an interesting result when it is considered
that only private alleles are used to estimate
0̂  and 0 and a large number of polymorphic 
t s

alleles are excluded from the estimation of .
kt

In addition, the sample size has large impact
on ek . 

s
Correcting for this factor of under

estimation yields the estimates of total mutation 
rate by the methods of Kimura and Ohta (1969) and 
Rothman and Adams (1978) as 43.41x10  ̂ and 47.69x 
10  ̂per locus per generation respectively (see 
table 6.4). No such correction is required when 
singletons are used. The correction factor for 
the rare variants accordingly becomes 1.6718 which 
gives the total mutation rate by the methods of Nei 
(1977) and Chakraborty (1981) as 7.57x10  ̂ and 
6.92x10  ̂ respectively. It may be noticed that 
the rare alleles approaches and the singleton 
approach yield almost similar estimates of y 
total.

Estimates of 0 were also obtained by using 
the amount of expected heterozygosity in the five 
populations (table 6.5). Only those loci which 
are included in the study, have been used for
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TABLE 6.4 ESTIMATES OF TOTAL MUTATION RATE BY VARIOUS

ESTIMATION PROCEDURES

Electro-
morph
mutation
rates

6(xlO )

Correction
factor

Total
mutation

rate
(xlO6)

Kimura and Ohta's 
method

5.17 3 x 2.7986 43.41

Rothman and Adams' 
method

5.68 3 x 2.7986 47.69

Nei's method 1.51 3 x 1.6718 7.57

Chakraborty's 
method

1.32 3 x 1.6718 6.92

Singletons
method

2.29 3 6.87

Average 3.19 22.49
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estimating the average heterozygosity (h. = l-Ex..). 

The individual estimates of 0p do not correspond 

well with the respective values of 0p given in 

table 6.3. However, the average value of 6p, when

corrected for an upward bias of 401 (Ewens and
/\

Gillespie, 1974) yields an estimate 0* of 0.0721. 

This average is almost similar to the value of

0.0730 of 0, .
kt

Although Bhatia (1980) and Chakraborty (1981) 

find the relation between the number of rare 

alleles and heterozygosity significant in 

Australian Aborigines and Amerindians respectively, 

no such correspondence is seen by Bhatia (1981)

in 12 world populations. Similarly, no correlation
/\ /\

between 0p and 0^ is observed in these populations,
t

although the correspondence in the average estimates

of 0* and 0, is encouraging. 
b Kt
In chapters 4 and 5 I tried to bring out the 

role of subunit size and structure in changing 

the rate of mutation per cistron. The conclusion 

from these results is that although there exists 

a relationship between the number of rare alleles 

as also the rare allele heterozygosity and the 

molecular constraints, there is no simple 

regressing line available for the extrapolation 

of mutation rate. This is partly because the 

correlation between subunit size and mutation 

rate is incomplete and partly because the molecules 

with medium sizes attract, on an average, less
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TABLE 6.5 ESTIMATES OF 0p FOR VARIOUS POPULATIONS 

OBTAINED FROM THE PROTEIN LOCI INCLUDED 

IN THE STUDY

Population
Hetero
zygosity
(1-Ex.2)l

0F 0*F

Australian Aborigines 0.0417 0.0435 0.0311

Papua New Guineans 0.0748 0.0808 0.0577

Scheduled Tribes 
of India

0.0950 0.1050 0.0750

Khoisans 0.1067 0.1194 0.0853

Pygmies 0.1350 0,1561 0.1115

Average 0.1010 0.0721

6* = 0.71430 F F
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mutations. However, it is clear that the choice 
of results on single proteins for the mutation 
rates per cistron must be qualified by the size 
of the molecules.

The need for both direct and indirect estimates 
of mutation rate in man from protein data has been 
emphasized by a number of workers. Ten years ago, 
it would have been difficult to ask for more than 
finding that the order of magnitudes correspond 
(Caval1i-Sforza and Bodmer, 1971). The attemps to 
resolve this problem in more detail have revealed 
the existence of variation at cistron level greater 
than an order of magnitude. In the present state 
of the art two sets of estimates exist. By choosing 
to use the sampling formulations which do not 
incorporate the demographic features of the 
population, except in the estimation of N, one 
gets the total rate of mutation per cistron per 
generation as -7x10 ^. The estimated rate is 
6-8 fold higher when the demographic features 
are taken into account. Any attempt to resolve 
these differences will go a long way toward 
obtaining more reliable estimates of mutation rate.

The question of whether certain populations 
have higher mutation rates (or lower selection 
against mutation at these loci) in certain popula
tions (Neel, 1973; Neel al.,1980c) seems to be 
unresolved by the present analysis.
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The Frequency of Private Electrophoretic Variants in Australian 
Aborigines and Indirect Estimates of Mutation Rate

j
K. K. B h a t i a , * 1 * * N. M. B l a k e , a n d  R. L. Kirk

SUMMARY

The number of “ private” electrophoretic variants of enzymes controlled by 
25 loci has been used to obtain estimates of mutation rate in Australian 
Aborigines. Three different methods yield values of 6.11 x 10-6, 2.78 x 
10-6, and 12.86 x 10~6/locus per generation for the total sample of 
Aborigines. One tribal population of Waljbiri in central Australia gives values 
of 2.99 x 1CT6 and 2.04 x 10~6 for two of the methods, the third being 
unapplicable. The mean mutation rate for the total Aboriginal sample of 7.25 
x 10-6 is very similar to the value obtained by Neel and his colleagues for 
Amerindians in South America.

INTRODUCTION

Several studies have used the frequency of private electrophoretic variants of blood 
proteins detected in samples from local human populations to indirectly estimate the 
average mutation rate per locus in man [ 1 -  5]. Neel and his colleagues and Tchen et al. 
based their calculations on data collected by themselves and collaborators from 
Amerindian populations in South America. Chakraborty and Roychoudhury relied on 
results published by workers from three laboratories, including our own, for tribal 
populations in India.

The formulations used and the basic data and assumptions needed in estimating the 
mutation rate from the frequency of rare variants have been detailed by Neel and 
Rothman [3]. They conclude that for electrophoretic variants the mutation rate 
averages 16 x 10_6/locus per generation in Amerindian populations, but they point out 
that the possibility exists for variation in mutation rate on an ethnic or regional basis. 
Since this possibility requires exploration before statements can be made on the
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1 All authors: Department of Human Biology, John Curtin School of Medical Research, Canberra,
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average mutation rate for man as a whole, we are analyzing our own extensive data for 
populations in the Southwest Pacific and Australian regions. We report here results for 
the Aboriginal populations of Australia. Results will be published later for populations 
in Papua, New Guinea, and for other parts of South and Southeast Asia and the Pacific.

THE STUDY POPULATION

At the time of first European contact, the Aborigines were spread across the 
Australian continent, having exploited, with few exceptions, all the available ecologi
cal situations. Their presence in the continent is dated back to at least 40,000 years, 
though the occupation of the more arid areas in the center probably took place no more 
than 10,000 years ago [6]. At the time of European contact the population of Aborigines 
has been estimated at about 250,000 [7], and the population was divided into several 
hundred tribal and local groups varying in size from 100 to several thousand persons 
[ 8].

During the last 200 years the Aboriginal population of Australia fell dramatically, 
reaching its lowest reported level in the census of 1921. This population decrease was 
not uniform; in some areas such as Tasmania, the eclipse was total, while in many 
others across the southern portion of the continent there are few, if any, persons of full 
Aboriginal descent remaining. In areas more remote from European settlement the 
decline in numbers was less, but even here the total may have been reduced to 50% 
before the increase in population characterizing the present situation commenced. The 
present analysis is based on samples from this area of minimum disturbance shown in 
figure 1.

There are no accurate records of the age structure in traditional Aboriginal 
populations. Available data refer to populations already exposed to varying degrees of 
European contact. At present, the age structure for persons of full Aboriginal descent 
shows a heavy-based pyramid with only 41.6% in the 15- 44 years age group [9]. In 
the traditional situation, each population may have varied in demographic parameters 
influenced by natural disasters such as prolonged drought or cyclones. Such factors 
may have led to drastic reductions in number followed by subsequent population 
expansion or by replacement through migration from neighboring groups. Over a 
longer time period, however, we assume that the population of the continent was in 
equilibrium, and that the average net increase was zero.

Since the precise boundary of the total Aboriginal population in our surveys is 
difficult to define, we have provided data also for one specific tribal group, defined by 
the spoken language Waljbiri, one of the largest linguistic groups in the Northern 
Territory. The Waljbiri territory (see fig. 1) covers 35,000- 40,000 square miles of 
arid and semi-arid country, and the population density averages one person per 25 - 27 
square miles [10].

Meggitt’s detailed study of the Waljbiri revealed that the dialectical Waljbiri tribe is 
further divided into four subgroups, namely, Yalpari (Lander), Waneiga, Walmalla, 
and Ngalia. Marriages between the subgroups are frequent, according to Meggitt. 
Tindale [11], however, found only 1.3% marriages between Ngalia and Walmalla, and 
no Yalpari-Waneiga marriages were recorded. Birdsell [12] claims that before 1935.
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Fig. 1. —Map of Australia showing area sampled (diagonal hatching) and tribal territory of the Waljbiri 
(cross hatching).

the Ngalia subgroup was quite distinct from the other Waljbiri. Intertribal marriages 
involving Ngalia, however, were significantly higher at 6%— 7%.

The Waljbiri in our series were sampled mainly at two localities, Yuendumu and 
Hooker Creek. The Yuendumu Waljbiri predominantly belong to the Ngalia subgroup, 
though some reside also at Hooker Creek. Although we have pooled the results for all 
Waljbiri, our data indicate a clear-cut heterogeneity between the populations at these 
two localities.

THE LABORATORY DATA

Our analysis is confined to data for red cell enzyme proteins and hemoglobin, 
representing products of genes at 25 loci. The basic data have been tabulated recently 
by Blake [ 1 3] and are summarized in table 1. A total of 16 detected variants restricted 
to Australian Aborigines are listed in table 2, together with the number of copies 
observed and their gene frequencies. Three of the variant alleles (PGM23, CVl,9, and 
C V ) have achieved frequencies above 1% and can be classified as polymorphic. Two 
others (PGDElchü and PEP B6) have allele frequencies approaching 1%, and the 
remainder are more restricted, the number of copies ranging from one to 14. Table 2 
also shows separately the number of rare variants detected in the Waljbiri tribe. Only 
five of the 16 rare variants among Aborigines were detected among the Waljbiri, four of
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these being polymorphic in this tribe, while the other (PEP B6) has an allele frequency 
of 0.74%. Three of the polymorphic alleles among the Waljbiri are polymorphic in 
Aborigines in general. In the case of the other peptidase variant allele (PEP B 7), 13 of 
the 14 copies occurred among Waljbiri, the other example being found in Luridja, a 
group known to intermarry with the Waljbiri.

METHODOLOGY

So far, three methods of indirectly calculating the mutation rate for electromorphs 
have been suggested and have been reviewed by Neel and Rothman [3].

Kimura and Ohta’s Method

In Kimura and Ohta’s method [14], three parameters are involved: the average 
number of mutant alleles per locus (/) estimated from all variants known to be restricted 
to the study populations; the effective size of the population (N e), and the average 
mutant survival time in generations (t0) for alleles not moving toward fixation. The 
mutation rate, /jl, is given by

TABLE 1

Genetic Markers in Australian Aborigines

Locus no. Enzyme system Abbreviation Sample size

1 .............................. ................. 6-Phosphogluconate dehydrogenase 6PG D 4035
2 .............................. ................. Acid phosphatase-1 A C P , 4016
3 .............................. .................  Phosphoglucom utase-1 P G M , 3919
4 .............................. .................  Phosphoglucomutase-2 p g m 2 3790
5 .............................. .................  Peptidase A PEPA 3034
6 .............................. ................. Peptidase B PEPB 3189
7 .............................. ................. Carbonic anhydrase-1 C/4, 3751
8 .............................. ................. Carbonic anhydrase-2 c a 2 3751
9 .............................. ................. G lyoxylase GEO 1290

1 0 .............................. .................  Adenosine deaminase ADA 1437
1 1 .............................. ................. Esterase D EsD 1556
1 2 .............................. ..................Glutamic pyruvic transaminase GPT 1391
1 3 .............................. ................. H em oglobin-a H b a 2692
1 4 .............................. .................  Hemoglobin-/? H b ß 2692
1 5 .............................. .................  Diaphorase DIA 1861
1 6 .............................. ................. G lucose-6-phosphate dehydrogenase G6PD 1014
1 7 .............................. ................. Malate dehydrogenase-2 m d h 2 2964
1 8 .............................. ................. Superoxide dismutase SOD 1795
1 9 .............................. ................. Lactate dehydrogenase-A l d h a 4180
2 0 .............................. ..................Lactate dehydrogenase-B L D H ti 4180
2 1 .............................. ................. Isocitrate dehydrogenase /C D S 1226
2 2 .............................. .................  Phosphohexose isomerase PHI 1569
2 3 .............................. .................  Adenylate k in ase-1 A K , 3535
2 4 .............................. .................  Phosphoglycerate kinase PGK 1569
2 5 .............................. ................. Glutamic oxaloacetic acid transaminase GOT 748

Note. —Based on Blake, 1979 [13].
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TABLE 2

Number and Frequencies of Private Variants in Australian Aborigines

Total Population Waljbiri

Enzyme Variant No. copies % Gene frequency No. copies % Gene frequency

1  .......................6PGD PGDElch0
2  ..................... PEPA PEP A3
3  ..................... PEPB PEP B"
4  ..................... PEPB PEP B7
5  ..................... PGM, PGM,6
6  ..................... PGM, PGM,7
7  ..................... PGM, PG M /
8  ..................... PGM2 PGM /'
9  ....................... ACP, ACP,T

1 0  .........................CA, CA,9
11  .........................CA, CA,'°
12  .........................CA, C A /
1 3  ......................  LDHb LDHbSL0W
1 4  ......................  LDHa LDHaSIOVi
15  ......................  G6PD G JBFAST
1 6  ......................  PHI PHI4

65 0.81 0 0.00
1 0.02 0 0.00

53 0.83 6 0.74
14 0.21 13 1.43
4 0.05 0 0.00
1 0.01 0 0.00

103 1.36 46 5.68
6 0.08 0 0.00
1 0.01 0 0.00

192 2.53 36 4.44
8 0.11 0 0.00

166 2.21 14 1.73
1 0.01 0 0.00
2 0.02 0 0.00
1 0.04 0 0.00
1 0.03 0 0.00

Nei’s Method

Nei [2] gives a different formulation, where

Iv \_________
^  2Ne 2 logg (2nq) ’

and in this case, IQ is estimated from only those variants whose frequency does not 
exceed 1%, n is the sample size, and q is set at a value of 0.01.

Rothman and Adams' Method 

Rothman and Adams [ 15] give

P =  2 x  [ ? ( D  “  2g(i)Pn\ ,

where / is the expected number of mutant alleles in the effective population per locus as 
estimated from the sample, g(l) is the estimated proportion of alleles present in only a 
single copy, g(i) is the estimated proportion of variant alleles of i copies, and Pn is the 
probability for an allele represented by a single copy having i copies in the previous 
generation. The relationship between / and / is given by Rothman and Adams [15].

ESTIMATION O F / ,  /„ A N D /

For the total Aboriginal population, 25 enzyme loci have been studied. Of these, 13 
showed no polymorphism by the standard definition where the least common allele 
frequency did not exceed 1%, but private variants were detected at four of these loci. 
Twelve private variants were distributed among eight of the 12 polymorphic loci. The 
mean sample size (table 3) for the polymorphic loci without private variants (1419) is
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significantly lower than those with private variants (3686). In our data, therefore, the 
probability of detecting private variants among known polymorphic loci increases with 
sample size.

The data in table 3 clearly show that the value of I varies also with the type of loci 
(polymorphic or monomorphic). The probability of detecting private variants increases 
with sample size, which will also influence the value of /.

In Nei’s method [2], IQ is calculated only from those private variants which are not 
polymorphic. The differences for all loci between / and IQ is 0.12 for the total 
Aboriginal population. For the Waljbiri population, the only private variant ( P E P  B 7) is 
polymorphic. Since it is an exclusive tribal marker for the Waljbiri, we have used it in 
the calculation of IQ, giving a value of 0.04.

Rothman and Adams’ [ 15] method gives higher values for / than for either / or IQ, 
since the number of private variants is estimated for the total effective population. The 
difference is most marked for the monomorphic loci, where / is almost five times the 
value of / or IQ.

THE ESTIMATION OF Ne

As explained earlier, with the data available, it is not possible to give a precise 
estimate of the “ effective” population size because of changing reproductive patterns 
among Aborigines. Here we use the population in the 15-44 age group in the 1961 
census year, adjusted for the proportion of the total population in the surveyed area.

The population of full descent Aborigines in Australia in 1961 was 36,137 (18,899 
males; 17,238 females), of which 41.6% were in the age cohort 15- 44 years [9], and 
the area surveyed contains approximately 60% of the total full descent population. 
This gives a value o f N e = 9,160.

It can be argued that this does not represent the effective population size of 
Australian Aborigines during most of their stay on the continent. However, indirect 
evidence suggests the difference in age structure in traditionally oriented societies is not 
likely to be very different from the value used here. For example, Tindale [8] has 
recorded approximate age composition for three nomadic bands encountered in the 
central desert areas. The mean value for the adult composition of these bands is 28.0%. 
Since this covers the age range 20- 40 years, the composition of the 15 -  44 cohort 
will not be very different from the 41.6% derived from the 1961 census. In the case of 
the Waljbiri, we have age estimates for the Yuendumu population [16]. This gives 
43.2% for the 15- 44 age cohort. From the total Waljbiri population estimate given by 
Milliken [ 17], N e for Waljbiri becomes 1,173.

Another difficulty is that Aboriginal populations have been subject to a series of 
bottleneck effects due to the operation of various factors. This could cause the loss of a 
number of private variants which, in turn, will affect the calculation o f/, IQ, and /. The 
loss of these private variants, however, will be proportional to the decline in population 
size. On the other hand, private variants which survive the population crash will 
increase in number during the subsequent population expansion.

ESTIMATION OF 70
Kimura and Ohta [ 14] showed that the mean survival time for a neutral mutation in
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generations in terms of effective population size and total population size is given by

To = 2 loge (2N) ,

in a stationary nonsubdivided population with no reproductive death and the progeny 
size following a Poisson distribution. Kimura and Maruyama [18], however, argue that 
if the population is subdivided into loose random mating units between which 
migration occurs, it may be treated approximately as a single random mating unit, 
disregarding the substructure of the populations.

Applying Kimura and Ohta’s formula to the Aboriginal populations, and using the 
estimates of N e given above, we obtain values of t0 = 10.7 and 7.0 generations for the 
total Aboriginal population, and Waljbiri, respectively. Neel and Rothman [3] 
however, consider the values of T0 calculated by this method as overestimates. The 
mean survival time can be simulated for each population, and Li and Neel [ 19] and Li 
et al. [20] obtained values between 2.3 to 2.8 generations. However, after making 
concessions for the various factors influencing the population, Li and Neel [19] believe 
a mean value of 5.7 generations is more appropriate. We shall use this value here.

ESTIMATION OF MUTATION RATES

Mutation rates estimated by each of the three methods listed above, both for the total 
Aboriginal population surveyed and for the Waljbiri tribal group are given in table 4. 
The rates vary within a range from 2.78 x 10-6 to 12.86 X 10-6, with a mean value of 
7.25 x 10~6/locus per generation. In obtaining the values of /x based on Kimura and 
Ohta’s [ 14] and Nei’s [2] methods, we estimated the mean number of variants per locus 
using the sample size. Neel and Rothman [3], however, base their estimate on the total 
effective population size. Accordingly, we have also calculated /x with /  = / and/q = /, 
and the new values become 10.18 x 10~6 and 5.72 x lCLVlocus per generation, 
respectively.

Mutation rates estimated from private variants at polymorphic loci are 2 .5 -  5 times 
higher than those estimated from the monomorphic loci. This may be a function of the 
smaller sample sizes for the private variants at monomorphic loci in our sample, which 
will have reduced the probability of detecting private variants. Eanes and Koehn [21] 
recently have also drawn attention to the relationship between sample size and 
detection of rare electrophoretic variants. Neel and Rothman’s [3] method, however, 
yields a higher value of /x when all loci are considered together. The other two methods 
give values of /x for all loci intermediate between the values for polymorphic and 
nonpolymorphic loci, while in Neel and Rothman’s method, the value of fx for all loci 
is higher than for either the polymorphic or nonpolymorphic loci.

The values of /x = 2.99 X 1CL6 and 2.04 X 10~6/locus per generation for the 
Waljbiri, using Kimura and Ohta’s and Nei’s methods, are lower than the values 
obtained for the total Aboriginal sample. These lower values are due to the fact that 
while five private variants were detected in the Waljbiri, only one is included for 
calculating / and IQ. The other four are more widely distributed in the Aboriginal 
population, and it is not possible to assign the original mutants to the Waljbiri.
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TABLE 4

Mutation Rates ( x 106) in Australian Aborigines Estimated by Various Methods

Kjmura and Rothman and
Ohta’s method Nei’s method Adams’ method

/ /. 7
Polymorphic loci, total Aboriginal sa m p le .......... 9.55 4.01 11.52
Monomorphic loci, total Aboriginal sample . . . 2.96 1.66 2.28
All loci*, total Aboriginal sa m p le ............................ 6. l i t 2.78t 12.86
Waljbiri sa m p le ............................................................... 2.99 2.04

* Mean = 7.25 x 10"?.
t Following Neel and Rothman [3], the values of /x (/ = / ,  = /) were estimated to be 10.18 x 10~6 and 5.72 x 10-6 , 

respectively.

Neel and Rothman [3] estimated mean mutation rates based on values for 12 
Amerindian tribes in South America by each of the same three methods. The 
unweighted mean for the 12 tribes averaged for the three methods is 16 x 10-6/locus 
per generation. The mean value for the Amerindians is more than twice our value for 
the total Aboriginal sample. However, Neel and Rothman’s value of 16 x 10-6 is based 
on unweighted means for the tribal samples. If it is recalculated using weights based on 
the effective population sizes, the weighted mean value becomes 7.2 x 10_6/locus per 
generation. It is interesting to note that recently Neel and Thompson [22], using a 
method based on simulation, arrived at a mean mutation rate of 7.0 X 10_6/locus per 
generation. These values are very similar to our own based on the total Aboriginal 
sample. The value for the Waljbiri, of course, is only one-half that for the total 
Aboriginal sample. Neel and Rothman found a range of values of 0-51  x 10_6/locus 
per generation for their 12 Amerindian tribes. The Waljbiri, therefore, fall within this 
range and we assume that if data were available for a similar number of tribal 
populations in Australia, the range of values may also be similar to those for the 
Amerindians.

Although the indirect estimation of mutation rates using data on private electropho
retic variants has many problems ranging from the technical factors influencing the 
recognition of rare variants through sampling design to the estimation of /, /„, /, and 
Ne, it is of great interest that data collected in two different laboratories from studies of 
different populations on two continents have yielded estimates of /u. which are so 
similar. Further studies are in progress in our laboratory which we hope will make 
possible a further critical evaluation of this approach to the estimation of human 
mutation rates.
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Summary. The constraints of molecular size and structure on the relative magnitudes of 
electromorph mutation rates as calculated indirectly have been studied using data for 
Australian Aborigines. The role of sample size in detecting rare electromorphs is important, In 
addition, subunit size shows a positive and subunit number a negative correlation with 
mutation rate. The differences in mutation rates were 2-9-fold when calculated for different 
categories of the data. The importance of physicochemical constraints are discussed.

1. Introduction
During the past decade a number of statistical methods to calculate the mutation 

rates at cistron level from electrophoretic data, both direct (Mukai 1970, Mukai and 
Cockerham 1977) and indirect (Kimura and Ohta 1969, Nei 1977, Rothman and 
Adams 1978), have been developed. The latter methods are based on the detection of 
private electrophoretic variants in random samples from isolated populations. Some of 
the assumptions made are: (1) that there is a complete one-to-one correspondence 
between the incidence and detection of rare electromorphs, (2) that all the rare alleles 
observed in the population are introduced and maintained through mutation only, and 
(3) that there is a constancy of mutation rates, on average, over any subset of protein 
and enzyme loci.

The class of relationship given by (1) is very difficult to evaluate, as estimates of 
number of alleles depend critically upon sample size (Harris et al. 1974, Koehn and 
Eanes 1978, Eanes and Koehn 1978, Bhatia et al. 1979) and upon the resolution of the 
experimental techniques employed to discriminate allelic variants (Johnson 1977 a). 
The last point is not trivial, as new techniques suggest that there exists a large reservoir 
of previously undetected alleles (Johnson 1977 b). Introduction of new alleles by 
sources other than mutation, e.g., intragenic recombination, was suggested by Watt 
(1972), Koehn and Eanes (1976) and Strobeck and Morgan (1978).

The assumption included in (3) is the weakest since inter-locus variability in 
mutation rates has been noted by Nei et al. (1976). On the basis of amino acid 
substitutions in various polypeptide chains, they found this variability to follow the 
gamma distribution. Zouros (1979) pointed out that over a large range of species only 
certain types of enzymes occupy the same tail of the distribution, indicating the role of 
physicochemical features of the molecules and this may explain, in part, the inter
locus variability in mutation rates.

Parameters of genetic variation, like heterozygosity and the number of rare alleles, 
are affected by a number of factors. For heterozygosity, these include: substrate 
specificity (Gillespie and Kojima 1968), physiological function (Johnson 1974), 
quaternary structure (Zouros 1976, Harris et al. 1977, Ward 1977) and subunit size 
(Koehn and Eanes 1977, Nei et al. 1978, Brown and Langley 1979). The relationship 
among these has been demonstrated for both invertebrate and non-human vertebrate
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species. However, Harris et al. (1977) have detected lack of correlation between subunit 
molecular weight and heterozygosity in European human populations. Nei et al. (1978) 
attributed this to the low level of mean heterozygosity in human populations.

In the case of the number of rare alleles, the factors include: effective population size 
(Ohta 1972, Rothman and Adams 1978) intragenic recombination (Morgan and 
Strobeck 1979), subunit size (Eanes and Koehn 1978), founder effect (Thompson and 
Neel 1978), polymorphism (Harris 1975), bottleneck effect (Bhatia et al. 1979) and 
transient distribution of neutral alleles (Nei and Li 1976). The list is by no means 
exhaustive and a whole set of cause-effect factors, which include the total number of 
alleles segregating at a locus, mean level of heterozygosity and subunit number, etc., 
can be included for their role in the introduction and maintenance of rare alleles in a 
population. Since the estimation of mutation rates by indirect methods depends on the 
number of rare alleles, it is important to reassess the role of the above factors in 
determining these rates. In addition, because of the correspondence between molecular 
weight and mutation rates and the former’s role in introducing interlocus variability in 
mutation rates at the peptide level (Nei et al. 1976), it may be relevant also to calculate 
the mutation rates at base-pair level (Mukai and Cockerham 1977), making cistronic 
comparisons independent of molecular weight.

2. Materials and methods
Most researchers who have studied the role of variability in mutation rate and 

heterozygosity restricted themselves to answering only one or two queries, because of 
the difficulty of controlling all the factors involved. They compensated for the lack of 
control by increasing the range of species for which results were given. However, an 
ideal choice for an answer is a subdivided population, distributed over a large 
geographical area and sampled extensively. The electrophoretic results for Australian 
Aborigines reviewed by Blake (1979) seem to provide an adequate set of data for 
analysis. Blake’s data as retabulated by Bhatia et al. (1979) have been used in the 
present study. The loci included, arranged into monomers and multimers, and their 
respective samples sizes are shown in table 1. The multimer loci are all dimers except for 
the LDH loci. The subunit molecular weights have been taken from the tabulation by 
Hopkinson et al. (1976). A total of 15 multimeric and 10 monomeric loci have been 
included. In the absence of any direct relationship between subunit number and 
subunit size (Hopkinson et al. 1976), the data for subunit sizes were also pooled 
together.

The electromorph mutation rates per cistron per generation were calculated by 
using the methods of Kimura and Ohta (1969) and Nei (1977). The rates at cistron level 
were then converted to mutation rates per base pair per generation as suggested by 
Mukai and Cockerham (1977), with only a slight modification. The mutation rates for 
multimers were computed by subtracting 14% and 28% from the total number of base 
pairs for dimers and tetramerS respectively. This accounts for the amino acid residues 
involved in surface interactions (Turner et al. 1979).

The coefficients of correlation between various parameters were computed by using 
both the Spearman’s rank order- non-parametric and Pearson’s product moment 
correlations. Whenever required, the variables were log-transformed to equalize and 
normalize the variances. The analysis was performed by structuring different classes 
within each category to equalize or isolate the role of a particular factor.
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3. Results
Table 2 shows the distribution of loci at which private variants were detected. The 

data have been classified into two categories, namely multimers and monomers, to 
avoid the role of functional constraints in influencing other factors. Although the 
difference is small between multimers and monomers with respect to subunit size (mean 
values and S.D.s are 37-53+ 14-85 and 37-60+ 15-48) and mean expected hetero
zygosity (0-0408 and 0-0431) respectively, the retention of these divisions is relevant for 
other comparisons.

Relationship between the number of rare alleles and:
(a) Sample size. Eanes and Koehn (1978) and Bhatia et al. (1979) showed that the 

efficiency of estimates of mean number of electrophoretic alleles increases with sample 
size. This was observed also in the present study. The product moment correlation of 
the total number of alleles as well as the total number of rare alleles with sample size 
was significantly positive (r = 0-537, d.f. 23, P<0-003 and r = 0-625, d.f. 23, P <  0-001 
respectively). The relationship showed better correspondence in monomers (r = 0-667, 
d.f. 8, P<0018 and r = 0-71, d.f. 8, PcOOl l  respectively), but the correlation with 
multimers was significant for rare alleles only (r = 0-329, d.f. 13, P <  0-116 and r = 0-506, 
d.f. 13, P <  0-027).

(b) Total number of alleles. A significant correlation exists between the total number 
of alleles and the number of rare alleles because one is included in the other data set. 
The mean value of Pearson’s coefficient for this correlation was significant at the 0-1% 
level of probability (r = 0-803, d.f. 23, P < 0-001). But since it is an analysis of cause-effect 
relationship, the results can be appreciated better if some variables which affect both of 
them simultaneously are standardized. The partial correlations by controlling the 
sample size and mean amount of heterozygosity, individually and combined, yield 
similar high relationships, although in monomers, controlling by sample size is non
significant.

(c) Heterozygosity. Since the mean amount of heterozygosity per locus in any 
population is a function of the total number of alleles, a correlation between the two is 
to be expected. According to the stepwise mutation model and the intragenic 
recombination model, the introduction of new alleles will depend upon the frequencies 
of existing alleles, which is measured by heterozygosity. In the present data, the 
estimates of mean heterozygosity and its variance are 0-042 and 0-006 respectively. 
Spearman's rank order correlations for heterozygosity with rare alleles and total 
number of alleles are significant (r — 0-498, d.f. 23, P < 0-01 and r — 0-852, d.f. 23, P < 0-01 
respectively). The product moment correlation between number of variants and 
heterozygosity shows a negative correlation (significant at the 1% level of probability) if 
the values are controlled for total number of alleles. This suggests that the number of 
rare alleles as a function of heterozygosity or of the total number of alleles, as inferred 
from the stepwise mutation model, is misleading, particularly for low values of mean 
heterozygosity.

(d) Subunit number. Table 2 shows the distribution of loci at which rare alleles were 
detected in terms of monomeric and multimeric loci. Whereas about 60% of the 
monomeric loci exhibit the presence of rare alleles, the fraction is 40% in multimers. The 
number of rare alleles per locus is also much higher in monomers than in multimers 
(1 -00 against 0-40 per locus; table 3). This indicates that a negative association between 
the number of subunits and rare alleles exists and for the log-transformed variables the 
present data show a significant negative correlation (r= —0-483, d.f. 23, P <  0 007).
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(e) Subunit size. Eanes and Koehn (1978) obtained significant correlations between 
the subunit size and total number of alleles at enzyme loci in human populations. Since 
Harris et al. (1977) found no correlation between subunit size and heterozygosity, this 
suggests a direct relationship between subunit size and the number of rare alleles. In the 
present data, the correlation between the total number of alleles and subunit size is low, 
but the number of rare alleles shows a significant relationship (/• = 0-463, d.f. 23, 
PcO-Ol). The partial coefficient of correlation between the total number of rare 
alleles and subunit size is increased significantly when controlled for sample size 
(r = 0-666, d.f. 22, P<0-001). It is clear that rare alleles are strongly correlated with 
subunit size when other factors are standardized.

Effect on mutation rates
From the relationships outlined above, it is obvious that there are several factors 

which influence the number of rare alleles. I have, therefore, recalculated the 
electromorph mutation rates from the data for Aborigines following the methods of 
Kimura and Ohta (1969) and Nei (1977).

Table 3 shows the relationship between the sample size and the estimated average 
mutation rates. The average number of rare alleles per locus is much higher in sample 
sizes above 3000 than below 3000 (1-27 against 0-14). This results in a nine-fold 
difference between these two sample sizes when mutation rates are calculated by the 
method of Kimura and Ohta (1969), which does not take into consideration the effect of 
sample size. For the purpose of comparison, three categories of n ^  3000. n < 3000 and 
all sample sizes were made. The results show a systematic decrease in mutation rates in 
these respective categories.

The second important factor which operates to influence the incidence of rare 
alleles is the presence of polymorphism at a particular locus. The difference between 
mutation rates at polymorphic and non-polymorphic loci is almost two-fold, indicating 
the fact that the stepwise mutation model can be invoked to explain these diflerences 
(table 4). The difference between the multimer and monomer subgroups could not be 
given weight because of differences of sample sizes and the incidence of heterozygosity. 
The results in table 5 show the mutation rates per cistron/generation for three different 
categories of subunit size, each further sub-divided into multimers and monomers. The

Table 3. Sample size and electromorph mutation rates.

Sample
size

Type of 
enzyme

Mean
sample

size

Mean
subunit

size
No. of 

cistrons

Total 
no. of 
rare 

alleles

H per cistron ( x 106)

Kimura and 
O hta’s method

Nei’s
method

Multimers 3657 42000 4 4 9-56 6-36
3000 Monomers 3707 37428 7 10 13-68 6-34

Total 3689 39091 11 14 1219 6-35

Multimers 1794 35727 11 2 1-74 1 39
< 3000 Monomers 1623 38000 3 —

Total 1757 36214 14 2 1-36 1-09

Multimers 2291 37400 15 6 200 3-33
All Monomers 3082 37600 10 10 11-49 4-64

All 2607 37480 25 16 5-17 3-60
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Table 5. Subunit size and electromorph mutation rates. Note the fluctuations in mean sample sizes for
various categories.

Range of 
subunit size

Type of 
enzyme

No. of 
cistrons

No. of 
rare 

alleles

Mean
subunit

size
(daltons)

Mean
sample

size

per cistron ( x 106)

Kimura and
Ohta’s Nei’s
method method

< 25000 Multimers 4 ____ 17750 2117 —

daltons Monomers 2 1 18500 4016 4-78 3-12
All 6 1 18000 3776 1-62 106

25000-50000 Multimers 8 3 43375 2410 3-63 2-65
Monomers 5 3 34400 2474 5-74 4-20
All 13 6 39923 2434 4-40 3-25

> 50000 Multimers 3 3 55667 2206 9-56 7-21
daltons Monomers 3 6 55667 3633 1912 6-37

All 6 9 55667 2919 14-34 6-72

Table 6. Electromorph mutation rates ( x 106) in Australian Aborigines weighted for sample size, subunit 
size and proportion of cistron involved in surface interactions.

Kimura and Ohta’s method Nei’s method

Weighted by Multimers Monomers Total Multimers Monomers Total

Unweighted 3-83 9-56 6 12 3-33 4-64 3-60

Sample size 200 11-49 5-17 1-73 3-97 3-28

Sample size +
subunit size TOO 13-30 3-97 0-86 4-61 2-51

Sample size + 
subunit size + 
molecular 
surface interactions 0-83 13-30 3-69 0-71 4 61 2-35

Table 7. Unadjusted electromorph mutation rates per base pair in Australian Aborigines.

Type of 
enzyme

H per base pair ( x 108)

Kimura and 
Ohta’s method Nei’s method

Multimers 1-02 0-87
Monomers 4-92 1-70
Total 2-45 1 56

pattern in the three categories is of systematic increase with larger subunit sizes. 
Multimers have consistently lower mutation rates as compared with monomers, 
although the mean values of subunit sizes and sample sizes are similar.

4. Discussion
From the observations outlined, it is obvious that the structural constraints and 

cistron sizes of enzymes, besides the role of sample size, determine to a large extent, the 
relative magnitudes of electromorph mutation rates. Any comprehensive estimate of
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mutation rates for a population will thus have to be weighted for sample size and 
subunit size. In the present data, weighting by these factors leads to a general reduction 
in the average mutation rates because of the higher invariant nature of loci with low 
sample sizes and subunit sizes (table 6). Adjustment for amino acid residues involved in 
surface interactions in multimers reduces further the average mutation rates. This gives 
new estimates for /.i per cistron per generation in Australian Aborigines as 3-69 x 10”6 
and 2-35 x 10~6 by the methods of Kimura and Ohta (1969) and Nei (1977) 
respectively. The differences between monomers and multimers are, however, increased 
substantially after these modifications.

In principle, the interlocus variability in the mutation rates arising from the various 
cistron sizes should be minimized if we calculate the mutation rates per base pair per 
generation rather than per cistron per generation. The estimates of p per base pair per 
generation are given in table 7.

Despite the incorporation of modifications necessitated by the physicochemical 
constraints of the molecules and sample sizes, differences among mutation rates still 
exist. For example, the relationship between the subunit size and mutation rates does 
not resolve into a simple linear function. Similarly the differences between the 
multimeric and monomeric enzymes are increased when adjustments are made for the 
variation arising from the sample size and subunit size, yet the distinction between 
polymorphic, monomeric, large-subunit enzymes, and monomorphic, multimeric, 
small-subunit enzymes is clear cut. This indicates that in making comparisons for 
electromorph mutation rates among various human populations, the number and type 
of loci included in the estimations should be taken into account.
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Zusammenfassung. Der Zwang der Molekulargröße und -Struktur auf die relative Größe der indirekt 
berechneten elektromorphen Mutationsrate wurde aufgrund von Daten für australische Eingeborene 
untersucht. Es wurde gefunden, daß die Rolle der Stichprobengröße bei der Entdeckung seltener 
Elektromorphen wichtig ist. Außerdem zeigt die Größe der Untereinheiten eine positive und die Zahl der 
Untereinheiten eine negative Korrelation mit der Mutationsrate. Die Unterschiede der Mutationsrate waren 
zwei- bis neunfach bei Berechnung für verschiedene Kategorien der Daten. Die Bedeutung physikochemi
scher Zwänge wird diskutiert.

Resume. Les contraintes du format et de la structure moleculaires sur la valeur relative des taux de 
mutation electromorphe calcules indirectement ont ete etudiees ä partir de donnees sur les aborigenes 
australiens. Le role de l’effectif de l’echantillon dans la detection d’electromorphes rares est trouve important. 
En plus, le format de la sous-unite montre une correlation positive, et le nombre de sous-unites une 
correlation negative avec le taux de mutation. Les differences de taux de mutation etaient de 2 ä 9 fois quand 
ils etaient calcules pour differentes categories de donnees. L’importance de contraintes physicochimiques est 
discutee.
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Rare allele heterozygosity and relative electromorph mutation rates
in man
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Summary. Previous studies of human populations have failed to find a significant 
relationship between genetic variability, as measured by total heterozygosity, and cistron si/e. 
as measured by subunit molecular weight of proteins, but the number of different rare alleles in 
human populations has been shown to be correlated with subunit size. The present paper 
examines these relationships further, utilizing data on electrophoretic variants at 27 loci for 12 
human populations with a total of 8(X)0(X) individual system observations.

The results indicate that, if genetic variability is measured by rare allele heterozygosity 
instead of total heterozygosity, there is a significant correlation with subunit size. In addition, 
there arc significant differences for rare allele heterozygosity between mullimerie and 
monomeric proteins, the range of variability being less in the multimers (and in the total) than 
for monomers.

Finally, rare allele heterozygosity has a much bigger range of variability than the range of 
subunit size. By contrast, the range of rare allele heterozygosity between populations is less 
than ten-fold, a factor not evident in effective population sizes. Both interlocus and 
intcrpopulational estimates of relative electromorph mutation rates (REMR| have been 
calculated, utilizing the distributions of the number of different rare alleles as well as rare allele 
heterozygosity. The range of these estimates are much lower than the estimates given by 
Zouros (1979) using total heterozygosity as input.

1. Introduction
In a previous publication (Bhatia 1980), attention was drawn to the positive 

correlation between electromorph mutation rate and subunit molecular weight using 
data for Aboriginal populations in Australia. The same data were used to show a 
negativ e correlation with the number of subunits in the functional enzyme and also to 
illustrate the effect of sample size on the ability to detect elcctromorphs in the 
population. The analysis of electromorph mutation rates has now' been extended to 
include data from intensive surveys carried out by several different investigators for a 
number of major human populations: a total of more than 800 000 single locus tests has 
been analysed.

Two diIferent strategies have been used in examining the factors influencing 
electromorph mutation rates. In the first, the relationships of sample heterozygosities, 
or mean single locus heterozygosities over a set of related populations, are analysed, 
using both parametric and non-parametric correlation methods. In the second, the 
analysis is restricted simply to the relationship between the number of different 
electrophoretic alleles and the size and structure of protein molecules.

Using heterozygosity as a measure of genetic variability, the dependence of neutral 
mutation rates on subunit molecular weight was demonstrated by Brown and Langley 
(1979), Turner, Johnson and Eanes (1979), Ward (1978) and Koehn and Eanes (1977, 
1978) for various vertebrate and invertebrate populations. This class of relationship, 
however, was not demonstrated in single species tests of Colins (Johnson 1979), 
Drosophila (Johnson 1979, Voelker, Schaffer and Mukai 1980) and man (Harris, 
Hopkinson and Edwards 1977, Nei, Fuerst and Chakraborty 1978, Bhatia 1980).

mm 44N» M (ivm i » v  mO ixi . |d.x| ,v I rancis Lid
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How ev er. in single species tests. 11 arris ct al. (1977). Ward (1977) and Bhatia (19S0) have 
shown hetero/ygosity to he negatively correlated with subunit numbers.

Using the second strategy, a relationship between the average number of different 
alleles per locus and subunit size was demonstrated by Eanes and Koehn (1978) and 
Bhatia (1980) in pooled data on human populations and Australian Aborigines 
respectively. This class of relationship is. however, difficult to evaluate, as the non- 
parametric estimates of the number of electrophoretic alleles depend critically upon 
sample size(Nei 1977. Eanes and Koehn 1978. Rothman and Adams 1978, Bhatia 1980) 
and upon the experimental techniques employed to discriminate allelic variants 
(Johnson 1977).

Variability in the estimates of mutation rate from protein data, corresponding to 
the variation in subunit si/e. has been shown to follow the gamma distribution (Nei, 
Chakraborty and Fuerst 1976, Fuerst, Chakraborty and Nei 1977, Zouros 1979). 
Zouros (1979) has used these relationships to generate estimates of relative 
electromorph mutation rates (REMR) in various natural populations. Using total 
heterozygosity as input, he found the REMRs to vary more than 500 times over a set of 
protein loci.

Because of the lack of correlation between heterozygosity and subunit size, 
extension of Zouros*s approach to human data will hav e only a limited value. Instead 
the data on rare allele variability may be used to generate relative estimates of mutation 
rate because of its known dependence on subunit molecular weights. In the present 
paper, therefore, rare allele variability, expressed both as rare allele heterozygosity as 
well as the number of rare alleles, is utilized to estimate the REMRs.

2. Materials and methods
In the present study, data on population surveys for electrophoretic variants in 10 

major ethnic groups have been included. The surveys on Australian Aborigines, 
Melanesians. Iranians and South Asian tribal populations are from published and 
unpublished sources of data in this laboratory. The surveys adopted from other sources 
are: Amerindians (Neel 1978); Japanese (Neel. Ueda. Satoh. Ferrell, Tanis and 
Hamilton 1978; GPT data from Ishimotoand Kuwata 1974); English (as compiled by 
Neel ct al. 1978; Welch. Mills and Gaensslen 1975 for GPT data); Aymara Indians 
(Scluill. Ferrell and Rothhammer 1978); South African Koisan and Negroid 
populations (based on work by Professor T. Jenkins and his collaborators and 
compiled by Bhatia ct al. in preparation).

We have subdivided data on Melanesians into two linguistic groups, namely 
Austronesians and non-Austronesians, because of their different origins (Wurm 1975). 
Rare alleles, assigned on the basis of higher frequency to one language group, have been 
excluded from the other.

The data have been compiled for 27 protein loci (17 multimcrs and 10 monomers) 
and are listed in table 1. The multimeric loci are all dimers except the two LDH loci 
which are tetramers. Subunit molecular weights are taken from the tabulations of 
Darnall and Klotz (1975) and Hopkinson, Edwards and Harris (1976).

In the present study, a rare allele has been designated as one with less than 20 copies 
in 1000 determinations. For each population a separate list of rare alleles was prepared. 
Rare allele heterozygosity (//r) is defined here as the number of copies contributed by 
rare alleles per 1 (KK) determinations. The second parameter, the number of rare alleles 
(Kt) is simply a count of different rare alleles recovered at each locus. For some 
purposes k T is specified per 1000 determinations.
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Table I. Intcrlocus variability in the frequency of rare alleles and estimates of relative electromorph
mutation rates (REMRl.

No. of Rare alleles Rare allele
No. of 

d liferent
Relative elect romorph 

mutation rates
determin

ations Number Copies
hclero- 

/y easily | / / r)
rare

alleles | K , )
IR IM R )

R L M R il l  RLMR |2)
Locus ( I ) ( fll (O d =  m o o r  a E  =  KHK) H 1 / =/>, a  =  /;, \ e ,

\ / n i l  in te rs

Hb-2 4 9  191 11 170 3-46 0-224 0 0 4 7 7 0 0 2 5 6
11 b- / t 4 9  191 I I 39 0-79 0  224 0 0 1 0 9 0 0 2 5 6
SOD v 3 0  327 s 11 0  36 0 0 6 6 0  (H)50 0  (H)76
G LO 5 658 0 0 0 (H ) 0-000 0-tHHH) O(HHM) ,
1 si) 1X993 3 4 0  21 0  158 0  (H)29 0 O I X I
M D II 33 1X6 8 153 4 61 0  241 0 0 6 3 5 0 0 2 7 7
L.I)H „ 34 XX6 13 47 1 35 0-373 0  O I S 6 0 0 4 2 7
L D H „ 34 SX6 8 71 2 0 4 0 2 2 9 0  0281 0 0 2 6 2

HP 38 563 8 9 0  23 0-207 0  (H)32 0 0 2 3 7
GOT 8 352 4 4 0 4 8 0 4 7 9 0  IX >66 0 0  548
Pep A 32 853 15 59 L S I 0 -457 0 0 2 5 0 0 0 5 2 3
I t  D. 21 994 9 14 0  64 0-409 (HH)XX 0 0 4 6 8
Pep D 7 669 4 49 6 39 0-522 0-08X0 0 0 5 9 7
OPT 14 769 7 23 1 56 0 4 7 4 0 0 2 1 5 0 0 5 4 2
6 POD 4 6 X 8 4 IS IXX 4 0 1 0-384 0 0 5 5 2 0 0 4 3 9

( p 23 244 14 1 15 4 9 5 0 6 0 2 0-06X2 0 0 6 X 9
PHI 28 0 6 0 25 103 3-67 0  891 0 0 5 0 5 0  1020

\ l o n o n w r s

A t P, 4 6 X 5 5 7 45 0 9 6 0  149 0 0 1 3 3 0 0 1 7 1
A k , 38 385 2 11 0-29 0 0 5 2 0 -0040 0  (H160

26 XX9 5 15 0  56 0 1 X 6 0  (M)77 0  0213
( A , 17 502 s 40 2 29 0-114 0 0 3 1 6 0 0 1 3 0
PGK 17 700 -) 112 6 33 0-113 0 0 X 7 2 0 0 1 2 9
I ' t iM , 4 9  605 27 96 1 94 0  544 0 0 2 6 7 0 0 6 2 3
Pep 13 33 310 15 1 IS 3 54 0 -450 0 0 4 X 8 0 0 5 1 5
PCiM . 48  550 14 304 6-26 0  2X8 0-0X62 0 0 3 3 0
Alb 3 0  264 9 276 9 12 0-297 0  1 256 0 -0340
T f 38 091 23 192 5 0 4 0  604 0 0 6 9 4 0 0 6 9 1

The relationships between rare allele variability and molecular structure were 
tested using linear regression methods. Whenever necessary, the variables were log 
transformed to equalize and normalize the variances. Both Pearson's product moment 
and Spearman's rank order correlations were computed to test the correspondence 
between different variables.

3. Results
Table 1 shows the distribution o f the total number o f rare alleles (B) and total 

number of copies and sample sizes (/;), for the 27 protein loci. Columns D and E of the 
table show the observed estimates of rare allele heterozygosity (/ / r) and number of rare 
alleles (Ar) per 1000 determinations respectively. The weighted mean subunit sizes, 
sample sizes and rare allele heterozygosities for various classes of subunit size are 
shown in table 2.

Intcrlocus variability
Number of rare alleles (K r). A total of 266 different rare alleles, with an average 

recovery of one rare allele for every 3016 determinations, was detected. The range is
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from none in 5658 determinations for glyoxalase(GLO) to one in 1122 determinations 
for phosphohexose isomerase (PHI). Despite a significant correlation between the 
recovery of rare alleles and sample size (r = 0-544; /><0 002). sampling error is unlikely 
to explain the failure to recover variants for glyoxalase(GLO). The possibility of testing 
5658 individuals without detecting a variant is very low (P <0001).

The mean unweighted number of rare alleles (Kf) per 1000 determinations in 
monomers and multimers are 0-279 + 0088 and 0-349 + 0053 respectively. The 
difference is statistically insignificant, thereby discounting the role of quaternary 
structure in introducing new alleles.

There is a significant positi\e correlation between the number of different rare 
alleles (Kr) and subunit sizc(m). The values of rKm for total, multimeric and monomeric 
loci are shown in table 3. Only 34”,, of the variability in the number of different rare

Table 3. Correlation coefficients jr) between molecular weight, sample si/e and parameters of rare alleles 
and the proportions of variance explained b\ molecular weight variation (r~).

Sample size Subunit size

Parameter protein r r2 r r2

Number of rare M ultimers 0-5149* 0-2651 0-51 IS* + 0 2619
alleles Monomers 0 6269* 03930 0-6402*+ 0-4099

I K, ) Total 0-5441** 0-2960 0-5X34*** + 0-3403
Rare allele Multimers 0-067S 0(X)46 0 4314* 0 1X61

hetero/v eositv Monomers -  0-1652 00273 0-7511** 0-5641
(//,) Total 00462 0-0021 0 6411** 0 4110

* 001 < P < 0 05. ** 0-001 < P < 001: *** P < 0-001; + Partial correlations after controlling for sample size 
are 0X450***. 0 7590*** and 0-7454*** for multimers. monomers anil total proteins respectivelv.

alleles is explained by variability in subunit size. This proportion rises to 55”,, when the 
partial correlations are computed, after controlling for sample size. Considered 
separately, both multimers and monomers show better correspondence with their 
respective molecular weights (see table 3). The values of r1 for multimers and 
monomers are increased to 74",, and 57",, respectively, when adjustments are made 
for sample size as control variable. The estimated parameters for the regression line 
y = a + b.X are: ä = 0 2402 and f  = 00002 3. The small value of b is due to the units used 
for expressing molecular weights. The scattergram for the values at each locus is shown 
in figure I.

Rare allele heterozygosity (Hr). The estimates of rare allele heterozygosity (//r) are 
not related to fluctuations in sample size (;- = 0046; P>04I0) or to the number of 
dilferent rare alleles (r = 0-272; P> 0085) (the rank order correlations for the latter are, 
however, significant). However, a significant positive correlation does exist with 
subunit size (r = 0641; PcOOOl) with r2 explaining more than 41",, variability 
contributed by molecular weight. These results are specially significant in view of the 
lack of correlation between total heterozygosity and molecular weight in human 
populations. Both multimers and monomers similarly exhibit significant correlations, 
although the value of r~ in multimers is only 18",, against 56",, for monomers (see 
table 3).

The unweighted mean values of rare allele heterozygosity ( //r) are 2-70 + 0 47, 
215+ 0  48 and 3-63 + 0 93 for total, multimeric and monomeric loci respectively. In 
contrast with the results derived from the number of rare alleles (Kr) per 1000
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Relationship between the number ofdillercnl rare alleles per 10(H) determinations at a loeus and 
the respecti\e subunit molecular weights in human populations.

determinations, the results for rare allele heterozygosity exhibit significant differences 
between monomers and multimers. The role of molecular constraints present in 
multimers in reducing genetic variability is discernible in this parameter.

The scattergram for the values of rare allele heterozygosity ( / / r) and subunit 
molecular weight at each locus is shown in figure 2. The linear regression is

y =  — 0 84998 + 000009 .V

Subunit Molecular Weight ( in kilodaltons )

90

f igure 2. Relationship between the rare allele hetero/ygositv (copies of rare alleles per 1000 
determinations) at a locus and the respective subunit molecular weights in human populations.
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Relative electromorph mutation rates (REMR). Two different estimates of relative 
electromorph mutation rates (REMR) were obtained.

RE MR (1) represents the scaled value of rare allele heterozygosity, so that for any 
locus

REMR (\) = y  'j-

and REMR (2) represents the scaled value for the number of dilTerent rare alleles, so 
that

REMR (2) =

The values of REMR ( I land REMR (2) are given in the last two columns of table I . 
Although both the estimates of REMR show significant postivc correlations with 
subunit molecular weight and have similar rankings, the variability exhibited by the 
two methods differs widely. After excluding the invariant locus (GLO). the ratios 
between the lower and upper values for REMR (1) and REMR (2) are 301 and 16 7 
respectively. The most variant loci are albumin (Alb) for REM R ( I land phosphohexose 
isomerase (PHI) for REMR (2).

The ratios of REMR (11 and REMR (2) for multimers are 16 00 and 13-42 and for 
monomers. 30 14 and 10 38 respectively. In comparison, the ratios of minimum to 
maximum subunit size are only 4-13 and 600 in multimers and monomers respectively . 
Thus the variability in REMRs is 3-5 times more than the observed variability in 
subunit size.

Interpopulational variability
Since the data on various loci were compiled from dilTerent population groups, 

interpopulation comparison have been made also. Table 4 shows the number of 
dilTerent rare alleles and rare allele heterozygosities in 12 human populations and the 
corresponding values of REMR (1) and REMR (2).

T.iblc 4 Parameters of rare allele variation and relative electromorph mutation rates in 12 human populations.

No of 
determin- 

ations 
(A)

Rare alleles Rare allele 
hetero/vgos- 

ity (//p  
D =  1000 C A

No. of 
dilTerent 

ra re
alleles (K',1 

£ = lOOOß A

Relative electromorph 
mutation rates tR1 \ IR )

Population
Number

<ß)
Copies

(C)
(REMR) 111 
F =  D, YD,

(REMR) (2) 
6 = 6, I  f ,

Amerindians 150521 2X 426 2X3 0 1X6 0-0907 0 0393
Japanese 70 3XX 37 175 2-49 0526 0-079X 0 1112
English 109 009 42 X3 0 76 0-3X5 00244 00X14
Australian Aborigines 66 25X 14 170 2-57 0 211 00X24 00446
Melanesians (Total) 263 X90 37 992 3 76 0 140 0 1205 00296

Austronesians (A N ) X9X06 17 163 1 82 0-1X9 005X4 00399
Non-Austronesians

(NAN) 174 0X4 19 556 3 19 0109 01023 0 0230
South Asian 

(Sch. Tribes) 65 974 20 178 1 66 - 0-303 0-0532 0-0640
South African Negroes 39X65 15 46 115 0-376 00369 0-0078
South African Khoisan 16X95 7 84 498 0 414 0 1596 00875
Avmaras 32 (KM 14 73 2 28 0437 0-0731 00924
Iranians 10993 16 41 3-72 1-455 01192 03075
Total sample 

(except AN. NAN) X25 797 266 2 628 2-75 0-322 _ _
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X umher of rare alleles (K r). There is a large amount of variability in the detection of 
rare alleles among dillerent populations. For example, in Iranians a new rare variant 
was detected for every 687 determinations, whereas in non-Austronesians a rare allele 
was reco\ered for every 9162 determinations. Although the detection of rare variants is 
a logarithmic function of sample size, it is interesting to note that there exists a negative 
correlation between the sample size and number of different rare alleles per 1000 
determinations (r = -0-560: P <0029). At present it is difficult to explain this result.

As shown above, the recovery of rare alleles for the total population does not differ 
significantly between monomers and multimers. However, although the values are 
significant for the individual populations of Japanese. English, Australian Aborigines. 
South Asian tribes. South African Negroes and Aymaras, in the English and South 
African Negroes, multimers show more rare variants; momomers are in excess in the 
other four (table 5).

Rare allele heterozygosity (H r). Significant heterogeneity in the interpopulation 
variability of rare allele heterozygosity ( / / r) was detected over individual loci except 
GLO (no variant recovered), EsD and GOT. Coincidentally, the recovery of rarealleles 
at these loci is. in general, rather low. Chi-square heterogeneity over populations is 
also found to be significant for weighted mean values for multimeric, monomeric and 
all loci combined. The mean values of rare allele heterozygosity ( / / r) in dillerent 
populations range from 0-76 in English to 4 98 in South African Khoisans.

It has been pointed out previously that there is a significant difference in rare allele 
heterozygosity between monomers and multimers for the total sample. The same effect 
is apparent when considering individual populations, significant differences being 
present between monomers and multimers for 7 out of 12 populations. In the two 
African populations, however, the rare allele heterozygosity is significantly higher in 
multimers. The reason for these differences is not clear.

Relatite electromorph mutation rates (REMRs). Table 4 shows the range of 
iirterpopulational estimates of REM R (1) and REM R (2). The range of REM R( 1) is less 
than an order of magnitude: REM R (2) shows slightly more variation. The differences 
are smaller in comparison with the effective population sizes of the groups in question.

Table 5. A comparison of rare allele heterozygosity (//,} and number of different rare alleles (K r) between 
monomers and multimers for 12 human populations and total samples.

Number of rare alleles per
Rare allele heterozygosity l(XX) determinations

Population Multimers Monomers z 2 Multimers Monomers

Amerindians 2-5.1 3 19 5-76* 0 192 0-178
Japanese 1 10 4 20 57 57** 0433 0659
English 0-78 0-74 004 0-453 0 316
Australian Aborigines 1 99 3-27 10-54** 0 166 0267
Melanesians (total) 2 41 6 00 214(X)* * 0 152 0 121

Austronesians 1 95 1 58 1 52 0 193 0 187
Non-Austronesians 1 99 5 14 128 33** 0 130 0076

South Asian (Seh. Tribes) 249 1 15 1 80 0 244 0-401
South African Negroes 181 046 1626** 0 593 0153
South African Khoisan 7-46 1 96 25 61** 0432 0-392
Ay maras 2 18 2-46 0-26 0-396 0 509
Iranians 4 .16 2-68 1 95 1 598 1-217
Total sample 2 21 3 48 143-58** 0 249 0-238

001 < P < 005 ; ** PcO O I.
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No correspondence between monomers and multimers was detected for REM R (1) 
across 12 populations (#* = — 0-036; Z3>0  485). The results indicate lack of any 
systematic pressure on the frequency of mutation rates in different human populations, 
with regard to protein structure.

4. Discussion
From the results outlined above, it is apparent that in human populations, sampled 

on an adequate scale, the size of molecules, and whether the intact molecule consists of 
a single subunit or of subunits combined together into multimers, has an important 
influence on the relative magnitudes of electromorph mutation rates. The range of 
mean rare allele heterozygosity for these different categories is 3 4 times for both 
multimers and for all loci, when molecules with similar subunit molecular weights are 
compared. Monomers, on the other hand, reveal a larger variability, although the 
range is still less than ten-fold (see table 2).

Analysis of variance among categories reveals that this variability is real rather than 
stochastic (/-' = 6 96; P < 0 01) but the various parameters of rare allele v ariation, when 
normalized for subunit size, indicate non-significant variation among different 
categories. The molecules, in the middle range of subunit size, however, reveal least 
variability.

Some of the results in the present study are at variance with our previous analysis of 
data on Australian Aborigines (Bhatia 1980). Differences in mutation rate of more than 
an order of magnitude between multimers and monomers, after weighting for sample 
size, subunit size and adjusting for the proportion of amino acids inv olv ed in molecular 
surface interactions in multimers, in the data on Australian Aborigines are not seen in 
the present data. The simplicity of proportionality between the molecular size and 
heterozygosity assumed in this and the previous paper is. however, questionable, 
especially when indiv idual amino acids, nucleotides and sites within cistrons are known 
to show variability in their substitution rates (Dayhoff, Schwartz and Orcutt 1978. 
Kimura 1979. Go and Miyazawa 1980).

Although the magnitude of v ariability of the relative electromorph mutation rates 
estimated from rare allele heterozygosity and number of different rare alleles is much 
smaller than that found by Zouros (1979) using total heterozygosity, the differences 
between the ranges of subunit size and REMRs are still significant. It appears that, 
since rare alleles arc less likely to be operated upon by systematic negative or positive 
selection, comparatively large numbers of rare alleles may be maintained by slightly 
deleterious mutations (Ohta 1976, Li 1978. 1979 a) or bottle-neck effect (Nei 1976, Nei 
and Li 1976). Although Bhatia( 1980)andChakraborty. Fuerst and Nei (1980) found no 
correlation between the number of different rare alleles and total heterozygosity, the 
effect of intragenic recombination (Strobeck and Morgan 1978, Morgan and Strobeck
1979) on loci with unusually high mutation rates may be another factor contributing to 
this variability. The larger variability seen in the size of mRNAs (Sommer and Cohen
1980) may also decide eventually the total amount of mutations obtained at a 
particular locus.

The range of interlocus variability in the estimates of I I, is. in general, much higher 
within populations than in the aggregate data. For example, Harris (1978) has recorded 
a 150-fold range in the values of H r in English populations. The data presented here 
shows similar ranges in other major world populations. Genetic drift and geometric 
distributions of the copies of rare alleles (Rothman and Adams 1978) are two of the 
reasons which can be invoked to explain this much larger variability. It may be relevant
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to point out here that only 6 out of 12 populations show significant correlations 
between the molecular weight and rare allele heterozygosity, which indicates clear!} 
that the relationship cannot be demonstrated unequivocally at the level of indiv idual 
populations. Besides, recent fluctuations in population sizes may also a fleet these 
individual population correlations (Li 1979b).

The distribution of REMRs does not give a good lit to either a gamma or log 
normal distribution. Cavalli-Sforza and Bodmer (1971) and Yasuda (1973) have 
examined mutation rates using a log normal and a gamma distribution respectively. 
Nei cl al. (1976). Fuerst ct at. (1977). Chakraborty. Flierst and Nei (1978), Zouros (1979) 
and Chakraborty ct al. (1980) have shown a gamma distribution of mutation rates in 
proteins supported with similar evidence from distribution of protein subunit sizes. 
Sommer and Cohen (1980). however, found that the frequency distribution of subunit 
molecular weights is well described by a log normal distribution. While the subunit 
molecular weights of the loci included in the present study do. as shown by non
significant values of Pearson s statistics for their log values, follow log normal 
distribution, the results for REMRs are not so well described b> this distribution. One 
possibility is that compound distributions, which may arise from substitution processes 
at nucleotide level and distribution of cistron sizes, are involved.

It is interesting to consider if there exists any interpopulalional correspondence in 
the single locus estimates of rare allele heterozygosity. Since the amount of normalized 
identity (/) between anv two distinct populations is negligible for rare alleles, the 
existence of such correlations must be a function of slightly deleterious mutations 
(Ohta 1976) or variable mutation rates (Chakraborty ct al. 1978). The significance of 
this correlation can be tested using normal tests, since the value of r follows a normal 
distribution for / =()(( hakrabortv ct al. 1978). The existence of such a relationship can 
be seen in the significant correlations between single-locus rare allele heterozygosities 
of two samples obtained from the same Japanese population (Neel. Satoh. Hamilton. 
Otake,Goriki. Kageoka. I ujita, Neriishi and Asakawa 1980). In the present study 13 of 
tfie 66 possible estimates of the coefficient of correlation for single-locus rare allele 
heterozygosities among 12 populations are significant. Since half of the populations 
show significant correlations between rare allele heterozygosity and molecular weight, 
from the foregoing discussion it could be expected that 15 of the 66 pairwise 
comparisons will show significant correlations. The close approximation of the 
observ ed and expected number of significant correlations is encouraging.

Eanes and Koehn (1977). Chakraborty and Fuerst (1979) and Chakraborty ct al. 
(1980) suggest that the correlation between the number of different alleles and 
molecular weights is generali} higher than the correlation between molecular weight 
and heterozygosity. Chakraborty ct al. ( I980)confirm theoretically that this isexpected 
to be so. For large sample sizes, they expect these correlations to be higher because of 
the inclusion of slightly deleterious mutations. For rare alleles, over sufficiently large 
sample sizes, this study shows the results to be otherwise for monomers and the total 
number of loci (table 3). The partial correlations, after controlling the sample size, 
however, confirm the observations of Eanes and Koehn (1977) and Chakraborty ct al. 
(1980).

The magnitude of interpopulation variability in REMRs recorded in the present 
study is smaller than the interlocus variability. One of the factors influencing this is the 
amount of variabihlv compressed within electromorphs which is related to A'n 
(( 'hakrabort v and Nei 1976. Nei and Chakraborty 1976). Zouros (1979) has considered 
these differences to be the relative estimates ofelfeetive population sizes (/Vc). However.
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demographic features of human populations have altered so much in the past and the 
errors in\ol\ed in computing estimates of /Vc are so large that I prefer to call these 
estimates interpopulational REMRs rather than relative effective population sizes 
(REPS).

The need for both absolute direct and indirect estimates of mutation rates in man 
from proteins has been emphasized by a number of workers (Neel 1973, 1977. Neel and 
Rothman 1978, Nei 1977, Chakraborty and Roychoudhury 1978. Dudinin and 
Altukhov 1979, Tchen. Segcr. Bois. Grenand. Fribourg-Blanc and Fiengold 1978. 
Bhatia, Blake and Kirk 1979, Bhatia. Blake, Serjcantson and Kirk 1981. Bhatia 1980). 
But it will be quite some time before reliable estimates are generated. With the 
accumulating evidence for the correlation of subunit size and molecular structure with 
mutation rates in animal and plant species, and now in man, estimates of relative 
electromorph mutation rates can be extrapolated to real problems in population 
genetic theory.
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Zusammenfassung. Bisherige I ’ ntcrsiich ungen v on menschlichen Bev bike run gen fa mien keine signifikante 
Ähnlichkeit zw ischcn genetischer Variabilität. gemessen durch die gesamte 1 Ictero/ygotic. und der Cistron- 
Großc. gemessen durch das Molekulargewicht von Untereinheiten von Proleinenies wurde jedoch gezeigt, 
da 13 die Zahl verschiedener seltener Allele in menschlichen Bev olkerungen mil der Größe v on Untereinheiten 
korreliert Die vorliegende Arbeit prüft diese Verknüpfungen weiter, wobei Daten über elektrophoretische 
V arianten auf 27 Loci bei 12 menschlichen Bevölkerungen mit einer Gesamtzahl von 800 ()()() 
Linzelbeobachtungen in Systemen benutzt werden.

Die I rgebmsse weisen darauf hin. daß bei Messung der genetischen V ariabilität durch 1 Ictero/ygotic 
seltener Allele anstelle der gesamten Hetero/ygotie eine signifkante Korrelation mit der Untereinheitsgröße 
vorhanden ist. Zusätzlich gibt es signifikante Unterschiede für die Hetero/ygotie seltener Allele /wischen 
mullimer und monomer Proteinen, wobei die Breite der Variabilität bei Multinieren (und bei der 
Gesamtheit) geringer ist als bei Monomeren.

Schließlich hat die Hetero/ygotie seltener Allele eine erheblich größere Breite der Variabilität als die 
Untereinheitengröße. Im Gegensatz dazu ist die Breite der Hetero/ygotie seltener Allele /wischen den 
Bev olkerungen weniger als zehnfach, ein Faktor, der bei wirklicher Bev ölkerungsgröße nicht erkennbar ist. 
Die Schätzungen vier ralativen elektromorphcn Mutationsraten (R L M R l /wischen den Loci und auch 
zwischen den Bevölkerungen wurden berechnet, wobei sowohl die Verteilungen vier Anzahl der 
verschiedenen seltenen Allele als auch die I Ictero/ygotic seltener Allele benutzt wurden. Die Variationsbreite 
dieser Schätzungen isl wesentlich niedriger als die Schätzungen von Zouros (1979). der die gesamte 
Hetero/ygotie eingab.

Resume. Les etudes precedents de populations humaines n'ont pas reussi ä trouver une relation 
significativeentre la variability genetique. telleque mcsurce par l'hetero/ygotie totale,et le format du cistron. 
tcl que mesure par le poids moleculaire de la sous-unite de proteines, mais le nombre d'alleles rares dilTerents 
däns les populations humaines s'est muntrecorrcle au format de la sous-unite. Le present travail approfondit 
l'etude de ces relations, en utilisant des donnees sur des variantes electrophoretiques ä 27 locus dans 12 
populations humaines avcc un total de 8(K)(KX) observations individuelles de systemes.

Les resultats iiuliquent que. lorsque la variability genetique est mcsurce par l'hetero/ygotie des alleles 
rares au lieu de l'hetero/ygotie totale, il y a une correlation significative avec le format de la sous-unite. De 
plus, il V a des dillerences signilicali\es pour l'heterozygotic des alleles rares entre les proteines mullimeriques 
et monomeriques. famplitude de la variability ctant moindre pour les mullimeres (et au total) que pour les 
monomeres.
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I mn leinen I . I'hetero/vgölte des alleles rates a line amplitude de v ariabilite beaueoup plus large que eelle 
du format des sous-umtes. I’ar contre. lam plitudc de l'lielero/sgoiie des alleles rares entre populations esl 
inferieure au decuple, tut facteur qui ne ressort pas des volumes cllectifs vies populations, l.es estimations 
interloeus contme interpopulalionelles des tan\ relaltfs de mutation electromorphc (RbNIR) out etc 
ealeulees. en emplovant les distributions du nombre de dillerents alleles rares aussi bien que I'hctcro/v got ie 
d alleles rares, l. amplitude vie ces estimations est tres inferieure aux estimations donnees par /ou ros  ( I ) 
emplovant I'hetero/v gotie contme information.
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Abstract
Data on private electrophoretic variants for 18 Scheduled Tribe populations from 

south India have been utilized to estimate mutation rate by two indirect procedures.
The values of M for the total pooled data are 0.150 x lCT* and 0.264x l(T6/locus per 
generation by the methods of Kimura and Ohta30 and Nei11 respectively. Three diffe
rent groups of these tribes yield the unweighted average values of M as 0.193 x 10-8 and 
0.410x10 6/locus per generation by the two methods given above. The estimates on 
individual populations, however, show a wide variability, even if only the non-zero 
results are considered. The unweighted average of these individual tribe estimates 
is an order of magnitude higher than the estimates obtained for the total populations 
of all the 18 tribes.

The problems involved in estimating mutation rate from protein data using indirect 
methods in tribal populations of India are considerable because of their levels of detriba-
lization and acculturation. The validity of the low values of /* in these tribes, in com
parison with the much higher estimates for the populations from the other parts of the 
world, is discussed.

Introduction
Recently Chakraborty and Roychoudhury14 have published indirect 

estimates of mutation rate from protein data on some Scheduled Tribes 
from south India. Their estimates ditfer from other such estimates by 
more than an order of magnitude, generated on Amerindians38 42 44 6i, 
Australian Aborigines6 8 and Papua New Guineans9. Large errors, how
ever, arc known to be associated with estimates derived by using the three 
available procedures of Kimura and Ohta50, Nei44 and Rothman and



63 Bhatia

Adams56. Chakraborty and Roychoudhury14 have discussed some of these 
problems with special reference to the data used by them for moderately 
acculturated and demographically expanding south Indian tribal groups.

In the last few years this department has screened a number of Sche
duled Tribes for genetic polymorphisms over subsets of 12 to 23 loci. The 
populations studied are : Kadars57, Todas, Kurumbas, Irulas and Malay- 
aryans58, 'Kotas24-26 Savaras and .Tatapus52 Kolams51. Chenchus50, Raj 
Conds.. Pardhans, Koyas, Konda Reddis, Lambadis and Ycrukulas11, 
Konda Kammaras, Koyas (second series) and Gadabas (unpublished 
material).

A number of other laboratories have repeated on red cell and serum 
proteins in Andhra Pradesh tribals5 ls 19 27 28 48 53-55 59 60. In addition 
comparative results are available for the non-tribal populations of south 
India (see Basu, 1978 for a list of references) as well as tribal and non- 
tribal populations from the adjoining states of Maharashtra, Madhya 
Pradesh and Orissa. The latter information is valuable in defining variants.

Data are now available for 18 tribal populations of south India sampled 
from a total set of 30 protein loci. Using this infoimation mutation rate 
estimates for tribes from India have been generated which supplement 
the results given by Chakraborty and Roychoudhury14.

The study population
The 18 tribal populations included in this study have been divided into 

three groups on the basis of their geographical proximity and demogra
phic features. Group I comprises nine tribal populations from the northern 
(Adilabad, Warrangal, Khammam, Srikakulam, Vishakhapatnam, E. 
Godavari and W. Godavari) districts of Andhra Pradesh; these popula
tions have been grouped together because of their relatively large popu
lation sizes, continuous dispersion, positive growth trends in the past 
100 years and cultural affiliations w'ith the Scheduled Tribes of central 
India. In some cases data from the same, or adjoining districts have 
been pooled. Group II includes Chenchus, Lambadis and Yerukulas from 
Mahabubnagar and Kurnool districts in southern Andhra Pradesh. They 
have been grouped together because they were sampled for the same dis
tricts but have a discontinuous distribution in restricted pockets over 
large areas with small effective breeding units. Group III is constituted 
by six small tribes, all restricted to the Nilgiris and Annamalai Hills of 
Kerala and Tamil Nadu States. The list of tribes studied is given in 
Table I.

Only populations screened for at least five protein loci have been 
included in the survey. Table II gives the number of persons tested for the



Mutation rate in Indian tribes 69

total 30 red cell and serum protein loci screened. Data generated by the 
use of non-electrophoietic methods for haemoglobins and g!ucose-6-phos- 
phate dehydrogenase have not been utilized.

Number of private and rare allelic variants
An allelic variant is considered to be ‘private’ if it occurs uniquely in 

only one population39. In addition, if any variant allele has a frequency 
of less than 1% it is considered to be ‘rare’. If an electrophoretic variant 
has been reported in populations from a number of localities in the sub
continent (e g. PHI 2-1), the corresponding allele has not been included 
in the list of rare variants since its presence in any particular population 
could be due to intermixture.

In Table III the private and rare variants are indicated in addition to 
rare variants which are found in more than one population. The latter 
include especially Hbßs, LDHuCal_1 and PGDC which are present at low 
frequency or are absent in some of these tribes. A few others (e.g. PHP), 
though rare in general, sometimes achieve polymorphic frequency in one 
particular population. All of the variants in this latter category, of course, 
are excluded from the calculation of mutation frequency.

Group I
Seven private allelic variants are restricted to the populations of this 

group (Table III). Two of these assume polymorphic proportions. 
PGI9r,adaba (1.14%) in Gadabas (unpublished data) and HbaK°y* Dora 
(5.00%) in a sample of Koyas from Polavaram Taluk in W. Godavari 
district19.

Group II
Only two private allelic variants, both polymorphic, were detected in 

group II populations, PHI'0 and PGM\°. PHP has been included although 
a single copy of PHP has been reported previously from north India10. 
It is unlikely that its presence in the Chenchus is due tc admixture.

Group III
A number of private (rare as well as polymorphic) variants have been 

observed in three of the six tribal populations in this group. The private 
polymorphisms are PGM\K, PGDKadaT and P(7.V/%lal, the former two in 
Kadars and the latter in Malayaryans, and two rare variants Pep BK in 
Kadars and LDHPoda in Tcdas.
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78 Bhatia

Methodology
Three methods for estimating the mutation rate indirectly from elec- 

tromorphs have been suggested so far : Kimura'and Ohta30, NeiM and 
Rothman and Adams56. These Methods have been summarised by Bhatia 
et als. In the present paper results have been included only for the first 
two of these methods. Because of small mean sample sizes and the low 
recovery of rare variants the estimates based on Rothman and Adams’ 
method in the present populations are highly inflated.

In both the Kirnura and Ohta’s and Nei’s methods the estimation of 
actual (apparent) population size N, (effective population size in Nei’s41 
and Bhatia et als terminology) is an important parameter and is normally 
equated to the number of breeding individuals given as the proportion of 
the population in the age group 15-44 years. In populations with cyclic 
changes in population size over the past few generations, Wright63 has 
recommended the use of harmonic mean.

To accommodate the role of isolation by distance in the large, conti
nuously dispersed populations of group I, the value of N is estimated as 
the ‘size of neighbourhood’, following Wright69, as

N = 4 ttg2DA

where a- is the variance of migrational distances, D is the population 
density and A the proportion of the reproductive age group (15—44 years) 
in the population. Pingle’s49 data yield the variance of marital distance 
in Adilabad tribes to be approximately 400km2. Majumdar33 has, how
ever, given much smaller values for marital distances for the Andhra 
populations as a whole. The individual values of D and A estimated from 
age and sex tables of the Andhra tribes12 are shown in Table I.

The effective breeding unit in the discontinuously distributed populations 
of group II is taken to be the administrative district, where the samples 
have been collected. Total census sizes have been utilized in Group III 
populations for estimating N.

Except Chenchus, who have increased marginally over their 1911 
numbers, the populations of groups 1 and II have been adjusted for popu
lation increase since 1881. Taking 1921 census as the base level, which 
is quite close to the harmonic mean size since 1 SS 1, we calculate the 
new estimates of N to be 0.560 of their 1971 numbers. No such adjust
ment is necessary for group III tribes, which have only recently built up 
their original numbers to 1881 levels after a decline in the early decades 
of this century.

Another important parameter used in estimating mutation rates by 
Kirnura and Ohta’s method is the expected number of generations a
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mutant survives prior to extinction t0. The estimate is given as
N eV

-  —2 [----- ] ln [2N]
to N

where N is the actual (apparent) population size as defined earlier and Nev
is the variance effective number. The estimation of to, however, involves 
large standard errors30.

The value of the variance effective number Nev, is given1617 as 
Nev=2N/[(l —F) +  (l +  F) Vk/k]

where F is a measure of departure from Hardy Weinberg proportions,
taken formally equivalent to the inbreeding coefficient and k and Vk are 
mean and variance respectively of the progeny size surviving to adult
hood. Vk/k also defines the index of variability. At birth and adulthood
the mean and variance will be defined by kb and Vkb, ka and Vka res
pectively.

Murty and Ramcsh37 and Ghosh21 have provided the estimates of kb 
and Vkb for post-reproductive age women and also the index of morta
lity Im15, for Adilabad tribes and Kotas respectively. The index of
variability at adulthood (Vka/ka) is recalculated using the formulae

Ps=l/(l-flm) 
and Vka=1+Pä [y ka—!]

ka kb
where Ps is the probability of survival to adulthood and the subscripts a 
and b refer to the values at adulthood and at birth respectively. The 
estimated values of this index in Adilabad tribes and Kotas is 1.43 and 
1.95 respectively. Basu’s2 data yield a value of 2.03 for Kotas. The 
high value in Kotas is attributed to a large proportion of nulliparous 
women in the 45 +  years age group. Similar demographic trends are seen 
in Irulas4. Since no published results are available on progeny size for 
men and women separately, adjustments for variation due to polygamy 
are not made in these calculations.

The value of F obtained from pedigree data on Andhra tribes and 
Kotas is 0.030Go and 0.0 4 022 23 respectively. Inserting these values of F and
the respective estimates of Vka/ka in the equation, Nev/N becomes 0.SL9 
and 0.650 in Andhra tribes and Kotas respectively. The former value is
used for computing F0 in individual populations of groups I and II, and

A

the latter for the populations of group III. The estimates t0, are given 
in Table IV.
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Estimates o f mutation rates
The results on the indirect estimates of mutation rate obtained at 

three levels of population organisation, i. e., at individual population, 
individual group and all tribes level are presented in Tables IV and V.
The estimators used are /.tk-O  and /*Ne i , as given by Kimura and Ohta30 
and Nei44 respectively.

At individual population level the estimates of /i show wide variability 
(Table IV). Even for non-null results the values differ by more than an 
order of magnitude.

The estimates of ^ in group III populations are on an average higher 
than those obtained for groups I and II populations. The unweighted 
average of these 18 individual population estimates is 1.29 X 10'6i0 .67 X 
lG~6/locus per generation and 3.11 X 10_6d:2.10 x  !0_6/locus per generation 
by the methods of Kimura and Ohta30 and Nei41 respectively. These 
estimates, however, entail large standard errors (SE) which may be
contributed by fluctuations in these estimates of I and IQ as also the 
errors associated with the estimation of N.

The estimates /xK-o  and /xXEI at individual group level, however, do not 
show much variability. Theu nweighted averages of three individual group 
estimates are 0.193 x 10'6i:0.032 X 10"6 and 0.410X Kr6=h0.0S0 x 10-6/ 
locus per generation by the procedures of Kimura and Ohta30 and Nei44 
respectively. The standard errors (SE) of the individual group estimates, 
obtained from the number of rare alleles over the surveyed loci are not 
so large, except for the estimates on group II (Table V).

The pooled data, over all the 18 populations, yield much smaller esti
mates of /x. The values of ^k_o and /uXEi are 0.150X 10~6;±0.048 x 10'6/ 
locus per generation and 0.264 x 1'0“6±0.084 X 10_6/iocus per generation 
respectively. The terms of standard errors (SE) given are due to the
variance of I and Iq, estimated as 0.649.

The large standard errors (SE) associated without the estimates of I and 
Ei are largely due to fluctuations in the sample size which affects the recovery 
of rare alleles seriously and the variability in the mutation rate over loci on 
account of subunit size (MW) variations. The variability in the sample size 
of loci tested for group I is 60—2,589, for group II is 113 — 1,327 and for 
the total poo’cd data is 60—4,159. Since some loci were tested on a relati
vely small number of individuals we have estimated new values of m 
only for those loci which have been tested for at least 1,000 individuals. 
The new estimates of /ik-o for groups I and II are 0 230 x 10~6i 0.109x
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10“6/Iocus per generation and 0.213 X 10~6± 0 .123 X 10~6/Iocus per gen
eration respectively with a mean value of 0.222 X 10“6/locus per genera
tion. Similar estimates of usei are shown in Table V. These estimates 
are slightly higher than our earlier estimates for groups I and II by the 
two methods.

The estimates of /ik-o and pNEi for pooled data over 23 loci (n> 1,000) 
are 0.196 X 10~6 ±0.059 X 10~6/ locus per generation and 0.325xl0~6±  
0.099X 10*6/locus per generation (Table V). The differences of these 
estimates from those obtained previously are only marginal.

Discussion
The indirect estimates of mutation rate generated on the Scheduled 

Tribes from south India are cleariy outside the range of similar estimates 
when comparisons are made with those obtained at similar levels of 
population organisation on Amerindians42, Australian Aborigines8 and 
Papua New Guineans9. At individual tribe level, the unweighted average
of p for tribes in India is an order of magnitude less than the unweighted 
average for Amerindians. Similarly, the results on the pooled population 
of all tribes from south India are considerably lower than similar esti
mates on the Australian Aborigines and the Papua New Guineans. The 
present results, although based on a much wider data base, in fact, 
confirm the apprehensions of Chakraborty and Roychoudhury14 regarding 
the use of data on moderately acculturated Indian tribes for the esti
mation of mutation rate, although the possibility of regional/ethnic 
differences in mutation rate exists43.

One of the factors which affect these estimates on Indian tribes seriously 
are the conservative procedures employed in designating a private variant. 
In the Indian context, where a large number of communities live together 
in the same area, identities between electromorphs suggest common 
descent and fresh mutations are private by default only. Considerable 
under-estimation of this sort of data makes the genetic interpretation of 
these results difficult.

Another serious source of error in utilising the indirect procedures is 
the use of the parameter N, the actual size of the population. Jn contin
uously distributed, large sized population groups the effective size of the 
breeding unit estimated by the methods of Wright69 or Bhatia et al9, 
suitability of the approach notwithstanding, is only approximate and 
tends to err on the higher side. In the absence of hard data on the histo
ric demography of these pre-literate societies, analogous dilemmas of a 
more temporal nature are faced. In addition, the extrapolation of the 
current demographic compositions to a time-specific constancy is disput-
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able. The much lower estimates of/«, in the Papua New Guineans9 and 
the Indian tribes (present study) may be attributed partly to these over
estimations of the expected harmonic values of N.

The use of e’ectrophoretic data, as analysed by the standard methods, 
clearly defines only a subset of total mutational events occurring at a 
given cistron and thus any estimates obtained by these approaches must 
be adjusted for these under-estimations.v In addition to about two thirds 
of the aminoacid substitutions which lead to no charge change34 45 61, a 
large fraction, depending upon the distribution/density of the population 
and the relative frequencies of the electromcrphs, of e'.ectrophoreticaily 
detectable substitutions is lost due to coalescence with other electromor- 
phs13 46 63. The effect of the latter is correlated with the population size. 
For presumably similar neutral mutation rates over similar sets of protein 
loci, Bhatia, et c,P found 2.66 times more silent alleles in the numerically 
stronger (and more densely distributed) Papua New Guinean communi
ties, than in the thinly spread, small sized group of the Australian Abor
igines. Because of the undefinable nature of these population sizes no 
adjustments have been made on this accord, though the present estimates 
may only be 20 to s0 per cent of the real values.

Another class of mutations omitted in these calculations is null muta
tions. Although the biochemical nature of these mutations may range 
from a single aminoacid substitution in a polypeptide to a total loss of 
polypeptide and, in theory, may result from mutations either in structural 
or regulatory genes40, the ratio of /liDuii to ^variant is known to range from 
2-6 fold36 66. Arthur et al1 and Nelson and Harris47 have reported mere 
than 12 fold more null mutations in experiments on mutagenised human 
cultured cells. Since it is now possible to distinguish between structural 
and regulatory mutations02 the proportion of null mutations at structural 
loci can be estimated. Although we do not introduce any correction foi 
this factor here, it may be noted that such adjustments will raise the esti
mates considerably, especially on iarge sized populations.

The procedures for calculating indirect estimates of from protein 
data have now been extended to non-human species by McCommas and 
Chakraborty33. In Bunodosoma Caverncita they have estimated the fi to b< 
6.3 x 10~7 to 6.3 X 10_8/Iocus per generation for population sizes cf 106 tc 
107 individuals. These results, along with our results of Indian and Papu; 
New Guinean populations, indicate that very low values of ix are genera
ted from protein data by using indirect procedures, specially if the popu
lation sizes are large.

The results on direct estimates of mutation rates from protein data on
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Drosophila and man are now available. Mukai and Cockerham36 and 
Voelker et aD1 reported the frequency of band morph mutations in 
Drosophila melanogaster as 1.81 xlO-0 and 1.28 x 10“6/iocus per gene
ration respectively. Dubinin and Altukhov20 and Neel et a/43 have given 
these estimates in human populations as 6 X 10'5 and 0.34 x I0-5 locus per 
generation in Russians and Japanese respectively. The results on human 
populations are, however, difficult to evaluate since more than 522, 119 
determinations in English29, Amerindians41 and Japanese43 have failed to 
identify a single confirmed instance of spontaneous mutation, although 
the possibility of detecting much common null mutations also exists. If 
anything, these results only indicate that the differences in mutation rates 
between moderately acculturated, comparatively large sized, Scheduled 
Tribe groups of south India, and the other non-tribal communities, may 
not be very large. Bhatia7 has also indicated that the range of inter- 
populationai estimates of relative electrornorph mutation rates is much 
lower than the range of their effective population sizes, indicating that 
mutability differences among human populations, both civilized and 
primitive, if any, are only marginal.
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Frequency of Private Electrophoretic Variants and Indirect Estimates 
of Mutation Rate in Papua New Guinea

K. K. B hatia , * 1 * * N. M. B l a k e , S . W. S e r j e a n t s o n , a n d  R. L. K ir k

SUMMARY

Data on rare and private electrophoretic variants have been used to 
estimate mutation rates for populations belonging to 55 language groups 
in Papua New Guinea. Three different methods yield values of 1.42 X 10 6, 
1.40 X 10 \  and 5.58 X 10 Vlocus per generation. The estimates for three 
island populations off the north coast of New Guinea—Manus, Karkar, 
and Siassi—are much lower. The variability in mutation rates estimated 
from rare electrophoretic variants as a function of population size is 
discussed. The mean mutation rate in Papua New Guinea is less than half 
the estimates obtained for Australian Aborigines and Amerindians.

INTRODUCTION

In a previous paper [1], we gave data for the frequency in Australian Aboriginesof 
private electrophoretic variants for enzymes controlled by 25 loci, and these data 
were used to determine an indirect estimate of the mutation rate. Three different 
methods yielded values of 6.11 X 10 6, 2.78 X 10 6, and 12.86 X 10 Vlocus per 
generation for the total sample of Aborigines, and similar values were obtained for a 
series drawn from one tribal population in Australia.

Neel and Neel and Rothman initiated such studies using data for South American 
Indian populations [2, 3], and the same data were re-examined by Nei [4j. The 
mutation rate estimates for these populations are comparable to those obtained by 
us in Australian Aborigines. Tchen et al. [5] estimated mutation rates for Amerindi
an populations in French Guiana, and Chakraborty and Roychoudhury [6] have 
done the same for some South Asian populations.
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We have now extended our own studies to include data for 21 protein loci over 55 
speech communities in Papua New Guinea. It is hoped that these new data will assist 
in understanding some of the complex factors that influence indirect estimates of 
the mutation rate in man.

STUDY POPULATION

Papua New Guinea comprises the portion of the island of New Guinea east of 
longitude 141° east plus several geographically related islands, including New 
Britain, the Admiralty Islands, and Bougainville. The census size of Papua New 
Guinea is approximately three million, or about 67% of the estimated total Melane
sian population, and its population is one of the most complex linguistically and 
most socially fragmented areas of the world. It is estimated that there are about 700 
speech communities in Papua New Guinea, divided between two major linguistic 
language types: Papuan and Austronesian [7]. A survey of the patterns of social 
structure is given in the Encyclopaedia of Papua and New Guinea [8].

The present analysis is based on samples collected from populations belonging to 
47 languages, also called speech communities, on the mainland of Papua New 
Guinea, together with two speech communities from Karkar Island and five from 
Siassi Islands (both off the northern shore of New Guinea), and one speech com
munity, Titan, from the Great Admiralty Island, also called Manus. The popula
tions of these three offshore islands (Karkar, Manus, and Siassi), although having 
evolved in a similar ecological setting, have been exposed to different types of 
population pressures. These societies, like the coastal regions of mainland Papua 
New Guinea, have been at the crossroads of migrations in and around the Pacific, 
and may well have had their genetic composition considerably altered through 
repeated contact with outsiders. The populations of these three islands have also 
been analyzed separately for respective mutation rates.

LABORATORY DATA

The samples analyzed were collected during the past 12 years by us or by 
collaborators involved in medical surveys in Papua New Guinea. Material in all 
cases was shipped by air to Canberra, and testing was carried out in our laboratories 
using standard procedures outlined in Blake et al. [9]. The variants of a few other 
systems were tested using the techniques as follows: GPT [10], ESD [11], CAi and 
CA: [12], GLO [13], and PGMi and PGM: [14], The list of enzymes studied, along 
with their sample size and subunit molecular weights, are given in table 1.

Seven of the 21 loci in the study are polymorphic, and six of the 21 are invariant. 
Out of the 53 alleles segregating, 24 alleles are rare as a whole. Two other alleles, 
namely, PGM\~ and PGMi9, although polymorphic, are considered here to be of 
New Guinean origin. This raises the number of variants to 26. The names of these 
variants, along with their frequencies, are given in table 2.

Four of these 26 variant alleles (Hb J Tonsar,k', GOT', GPT\ and GPTb) cannot be 
assigned with certainty to Papua New Guinea because of their presence in appre
ciable numbers in other Western Pacific populations that, as is true for the Japanese 
during World War II, have had contact with Papua New Guinea in the past. The
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introduction of these variants to Papua New Guinea through admixture, therefore, 
cannot be excluded. Thus, we have 22 alleles at 21 loci that can be regarded as 
indigenous to Papua New Guinea.

On Karkar Island we detected 10 of the 26 allelic variants listed in table 2 over a 
set of 18 enzyme loci. Only two of these, namely, LDHBKK2 and LDHBKK3, are unique 
to Karkar and are represented by single copies only. Seven of the other eight 
variants are mainland markers also; the only exception is Hb 7 Tongariki, polymorphic 
on Karkar but rare on the mainland. This last allele also has wide distribution in 
other parts of Melanesia.

We did not find any private variant at 14 red cell enzyme loci tested on Manus. 
The absence of Southwest Pacific genetic markers, such as PGM i 3 , PGM\ , PGMi , 

PG M i(\  PGK\  PGKa, and Hb / Tor,gariki, makes this population unique in the West
ern Pacific area.

For a set of 17 loci, we came across two unique variants on Siassi Islands, namely, 
PHI'  and PGMi , with a single copy each. The population of Siassi Islands, 
however, has a fair proportion of markers distributed in the Western Pacific region. 
Except for a very low frequency of PGMf\ four other variants, namely, PGK2, 
PGK4, PGMi0, and Hb J Tongankl, are in polymorphic proportions on these islands.

ESTIMATION OF /, Iq, AND /

Three different estimates for the mean number of variants/locus were calculated 
as given by Kimura and Ohta [15], Nei [4], and Rothman and Adams [16]. For the 
21 loci in the present study, we have detected 22 unique (20 rare and two polymor
phic) variants that give values of /, Iq, and /as  1.05,0.95, and 1.78, respectively. The 
two parameters of geometric distribution involved in the estimation of /, namely, b 
and c (b — 0.5567; c — 0.3865) [16], have been estimated from the data for Kiunga in 
the Western Province given by Serjeantson [17].

Considering the islands separately, the estimates of/, Iq, and / are 0.11,0.11, and 
0.46, respectively, for Karkar Island. The respective values for Siassi Islands are 
0.12, 0.12, and 0.86, and for Manus Island, zero for each estimate. The parameters 
of geometric distribution, b and c, used in the estimation of transition probabilities 
for both Karkar and Siassi populations (b = 0.2711; c — 0.7126) were calculated 
from the data on Karkar Island by Hornabrook [18].

Since the calculation of /depends a priori on the observed distribution of copies 
of rare alleles, g(i), and the ratio if)  of sample («) to effective population size (Ne), 
these estimates are inflated by 4.09 and 8.57 times on Karkar and Siassi, respective
ly, when compared with the observed value of /. This increase, when compared with 
a less than twofold increase for a similar estimate for the total sample, is highly 
inflated. It would seem that estimations of/by Rothman and Adams’s [16] method 
gives reliable results only with large absolute sample sizes.

ESTIMATION OF Ne

In the absence of historical records, it is difficult to estimate accurately the 
average effective population size (Ne) of linguistic groups in Papua New Guinea. 
However, since the estimates of mutation rate are highly dependent on the estimate
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of Ne, we discuss this in some detail. The Papua New Guinea Bureau of Statistics 
census of 1971 reported a total population of 2,435,409 indigenous persons, of 
whom 41.6% were in the reproductive age group of 15-44 years, with a similar 
proportion (41.5%) married at least once. With a minimum of 700 documented 
language groups [7], the maximum estimate of language group effective size is 1,447.

This maximum value of Ne may be considered a gross overestimate of population 
size during past generations. Van de Kaa [19] considers that the Papua New 
Guinean population was stable between 1890 and 1939, partly because there is no 
evidence to suggest otherwise, but mainly because analysis of the few surveys 
undertaken at that time show little demographic change. In our calculations, we 
assume that actual population size during the last 5-10 generations more closely 
approximates the census figures of 1939 and that the population of 1939 was very 
close to 50% of that enumerated in 1971.

In Papua New Guinea, estimates of Neo{language groups also require correction 
for the extreme variability in language group size. Linguistic groups may comprise 
fewer than 100 persons, as in Gorovu in the Ramu phylum [20], or more than 
150,000 persons, as in Enga in the Western Highlands [21]. By far, the majority of 
language groups have fewer than 5,000 speakers. Since the average value of Ne more 
closely approximates the harmonic than the simple mean of language group size, we 
have analyzed the three main linguistic phyla represented in the Madang Province 
to estimate the ratios of the harmonic means (H) to simple means (N). For the 
Adelbert Range phylum, H/N  is 35%; for the Ramu phylum, 33%; and for the 
Madang phylum, 40%. The combined value for 80 languages is 36%.

Therefore, for estimation of the mean number of speakers per language, we take 
50% of 2,435,409 as the total population prior to 1939, distributed among 700 
languages of varying sizes, with an average of 1,740 speakers. Since the harmonic 
mean of language group size is 36% of the simple mean, the more appropriate 
estimate is 626 speakers per language when correction is made for variability in 
language group size.

The effective population size is further modified by the proportion in the repro
ductive age group, variability in fertility, and deviation of the sex ratio from 1:1. The 
adult sex ratio was less than unity in the 1971 census and greater than unity in the 
previous census of 1966 [22]; so we shall assume the sex ratio in the reproductive age 
group fluctuates around 1:1. The proportion in the reproductive age group is more 
difficult to estimate accurately. In 1971,41.6% of the population was aged between 
15 and 44 years, compared with 45.0% in 1966 [22], and Serjeantson [23] recorded 
that 49% of the population of two relatively unacculturated Papua New Guinean 
language groups was aged between 16 and 45 years. We believe that the proportion 
in the reproductive age group in past generations was closer to 49%, the estimate we 
used in our calculations, than to the 42% currently observed.

Variation in fertility will modify Ne if the index of variability (V/Tc) deviates from 
unity [24], k and V being the mean number and variance of surviving offspring, 
respectively. In Papua New Guinea, the index of variability is inflated by factors 
such as polygyny, which was reported by 9% of married males as recently as 1971 
[22]. Serjeantson [23] estimated the index of variability as 1.22 in males from the
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Yonggom group with 10% polygyny, and 2.09 in males from an additional group 
(Awin) with 28% polygyny. The corresponding values in females were 0.96 and 1.40 
in a population with such comparatively low fertility [17] that it may well reflect the 
demographic structure of most Papua New Guinean groups prior to 1939.

With an average index of variability of 1.4 and 49% of the population in the 
reproductive age group, the ratio of Ne\ / N e is 83.7%. The average effective size of 
language groups in Papua New Guinea is estimated as 49% of 626, or 307 persons, 
and this is the value used in estimating the mean survival time for fresh mutations in 
Papua New Guinean language groups. In general, it is the language groups with a 
relatively large number of speakers that have been sampled, so that the average 
effective size of language groups with genetic data available exceeds slightly the 
average size of language groups in Papua New Guinea as a whole. Making similar 
adjustments as above for rapid population expansion in the last generation, for 
variation in language sizes, and for the proportion in the reproductive age group, 
the total effective population size for the 55 languages in this series is 34,450. We 
use this value in all our calculations.

The sizes of the three island populations (Karkar, Manus, and Siassi) stood at 
9,110, 13,839, and 4,715, respectively, in 1937-1939 [19], with 50.3%, 62.7%, and 
59.5% in the adult age group. After adjusting for the proportion in the reproductive 
age group, polygyny and sex ratio values of Ne are 3,735, 6,805, and 2,310 for 
Karkar, Manus, and Siassi, respectively.

ESTIMATION O F /0

The mean survival time for fresh mutations that will ultimately be lost from the 
population (F0) was given by Kimura and Ohta [15] and Nei [25]. This value is esti
mated for a Papua New Guinean language group as:70 = 2 Nev/Ne \n(2Ne) = 2X  
(0.837) In (2 X 307) = 10.74 generations, which is different from the estimate given 
by Li and Neel [26] of 5.71 from simulation studies of Amerindian populations. The 
estimates for Karkar and Siassi were calculated to be 14.92 and 14.12 generations, 
respectively. We have used these estimates for generating mutation rates by Kimura 
and Ohta’s method.

ESTIMATION OF MUTATION RATES

The estimation of mutation rates has been carried out using three indirect 
methods as mentioned above. Table 3 shows these estimates for the total Papua New 
Guinean population. The three estimates of /a by the methods of Kimura and Ohta 
[15], Nei [4], and Rothman and Adams [16] are 1.42 X 10 1.40 X 10 6, and 5.58 X
10 Vlocus per generation, respectively. These estimates range from approximately 
23% to 50% of similar estimates obtained for the Australian Aborigines by Bhatia et 
al. [1].

Neel and Rothman [3] have used the estimate for I  for the average number of 
mutant variants per locus in the formulation of Kimura and Ohta [15], instead of 
the observed value of/. A similar adjustment for differences between sample size (n) 
and effective population size (Ne) may be made in Nei’s formulation, as:
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given that

=  fr  ,

M ANe ln (2Neq)

1 - X g ( j ) ( \ - f ) j ’

where q — .01, f — n/Ne, j  is the number of copies, andg(y) is the observed propor
tion of variants with j  copies in the frequency distribution of rare variants (fre
quency less than .01) only. These modifications yield the new estimates as n = 
2.36 X 10 6 and 2.38 X 10 Vlocus per generation for Kimura and Ohta’s [15] 
and Nei’s [4] methods, respectively.

The estimates of mutation rate for island populations show a wide range. The 
value of n on Manus for a set of 14 protein loci is zero. The estimates of yu for Karkar 
and Siassi are given in table 3. Estimating the total number of variants in the 
populations with limited observations is highly unreliable, as is seen from the results 
for mutation rates in these populations by Rothman and Adams’s [16] method. The 
estimates of /x obtained by the methods of Kimura and Ohta [15] and Nei [4] on 
these islands are, however, comparable to similar estimates generated for the 
Waljbiri tribe in Australian Aborigines [1].

DISCUSSION

The estimates of mutation rates as obtained from a set of protein loci are affected 
seriously by a number of factors. Probably the most controversial aspect of these 
indirect estimates is the estimation of effective population size (Ne). This is particu
larly difficult in the Papua New Guinean communities that have recently been 
undergoing tremendous demographic changes. The impact of recent population 
expansion can be judged from the high proportion of private polymorphisms with 
limited geographical distributions. Out of 26 variants detected, as many as 10 have 
attained polymorphic proportions in various Papua New Guinean communities, six 
of them in the highlands, one on both Karkar and Siassi, and three in both highland 
and coastal communities.

The role of sample size and subunit size in affecting the detection and introduc
tion of rare variants has been stressed by a number of authors; for example, Nei et al. 
[27] and Bhatia [28]. In the present study, the mean sample sizes for loci with and

TABLE 3

M utation R ates in P apua N ew G uinea 

m *  106

Kimura and Ohta’s Nei’s Rothman and Adams’s
POPULATION method method method

Total.......................... 1.42 1.40 5.58
Karkar Island.......... 0.98 2.57 26.40
Manus Island.......... 0.00 0.00 0.00
Siassi Islands...........  1.84 7.58 94.56
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without variants are 7,226 and 4,955, respectively. This difference emphasizes the 
need for a sample size of at least 3,000, as suggested by Eanes and Koehn [29], before 
any attempts are made to generate mutation rates. Similarly, the mean subunit size 
for loci with these variants is 46,300 dal tons compared with 28,180 for the invariant 
loci. It is thus important to make comparisons of mutation rates only among 
populations with similar mean sample sizes and mean subunit sizes.

The effect of sample size on the mean number of rare variants per locus may be 
seen in a comparison of the data on Papua New Guinean communities with the data 
on the Australian Aborigines. While there is similarity with respect to protein loci 
included in the two studies (mean molecular weights of the subunits are 36,869 and 
37,560 daltons for Papua New Guineans and Australian Aborigines, respectively), 
the differences in the mean per locus sample sizes of 6,036 in the Papua New 
Guineans and 2,607 in the Australian Aborigines are reflected in the respective 
estimates of 1.05 and 0.64 for /.

However, the mean number of rare variants/locus per individual (//«) is higher in 
Australian Aborigines (2.46 X 10 4) in comparison with Papua New Guinean 
communities (1.74 X 10~4). Since the mean number of electromorphs recovered is a 
logarithmic function of sample size and the distribution of electromorphs is skewed 
further with sample size increase, it will be appropriate to compute the mean 
number of rare variants/locus per individual only in terms of effective population 
size (Ne), rather than in terms of sample size (n ). The two estimates for Australian 
Aborigines and Papua New Guineans then become 6.99 X 10 5 and 3.05 X 10 5, 
respectively, a difference of 2.29 times.

Nei and Chakraborty [30] have shown that the mean number of silent alleles, 
undetectable by electrophoresis, that contribute to an electromorph is higher in 
populations with large xVe/x’s than in populations in which this is small. On the basis 
of this argument, the proportion of mean numbers of silent alleles is likely to be 
much higher in Papua New Guinean communities than in Australian Aborigines. 
Since the mean number of rare variants/locus (/) reflects the incidence of mutation 
rate in a population, the ratio of NeI  in these two populations, when adjusted for 
sample sizes, yields a value of 2.66 times more silent alleles in Papua New Guineans 
than Australian Aborigines. The results at electromorph level (notwithstanding the 
differences in mutation rate at codon level between the two populations) are almost 
negligible.

Because of these various factors that may affect the mean number of rare variants 
per locus, the indirect estimates of mutation rate will show similar variations. It is 
not surprising, therefore, that estimates of /x generated from protein data for Papua 
New Guinea differ about twofold from estimates generated on a similar scale for 
Amerindians by Neel and Rothman [3] and for Australian Aborigines by Bhatia et 
al. [1]. The estimate of /x for a group of tribes in India, however, is lower by more 
than an order of magnitude compared with these estimates. This may be because of 
a recent population increase in India and differences in sample size, in the number of 
loci studied, and in technical methods employed in blood collection, none of which 
have been taken into consideration by Chakraborty and Roychoudhury [6].
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The estimates of Nei’s p for individual populations in South America (Neel and 
Rothman [3] and Tchen et al. [5]), in India (Chakraborty and Roychoudhury [6]), 
in Australia (Bhatia et al. [1]), and in Papua New Guinea (present study), however, 
show a wide variation with a mean estimate of 1.19 X 10 Vlocus per generation. The 
differences range from 0 — 9.28 X 10 5, with a more or less equal number of 
populations with estimates of the order of 10 7, 10 6, and 10 5. Our results for 
Karkar, Manus, and Siassi are at the lower end of this distribution, which conforms 
with the lower estimate found for Papua New Guinean populations treated as a 
whole.
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Abstrac!
Phenotype di stribulierss i rd g<re frequencies of nine red cell enzyme systems and 

haemoglobin are presented for six trihal pcpulatior.s from the Telangana region of 
Andhra Pradesh. AEO, MN and Rh fc’ccd group data are presented for four of these 
tribes. The results have teen cen pared with there frem ether Andhra Pradesh tribal 
Populations. The Yerukula trite are notable for the presence of PGM"7 at polymor
phic frequency, the occurrence of a single example of PGM1 0 and the absence of 
H b S'

Genetic distance comparisons were made for the six tribal populations reported in 
this paper and five others taken from the literature.

Introduction
The tribal populations of Andhra Pradesh are comprised of some 32 

Aboriginal groups which vary in size, geographical distribution antiquity 
and cultural diversity. They constitute about 4% of the total population 
of well over 40 millions, and the object of this paper is to present data on 
a number of red cell enzvme and bicod group systems for six tribal groups 
from the upland Teiargana regien of Andhra Pradesh: the Rajgondsanu 
Pardhans from Adilabad District, the Koyas and Konda Reddis from
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Present address : Department ce Mathcmatiques, Institut des Sciences Exactes, 
Universite ce Censtaniine, Constantine, Algerie.
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Khamman District and the Yerukula and Sugali from Mahnbubnagar and 
Kurnool Districts.

The Gonds are the predominant tribal group in Adilabad District, to 
where they are reputed to have migrated from the neighbouring state of 
Maharashtra. Their language is Gondi, a Dravidian dialect, which is 
closer to Tamil and Kanarese than to Telegu. In the past, some families 
of Gonds occupied a high social stratum and were politically powerful 
rulers in the region known as Gondwana during the Moghul regime. 
These families adopted the name of Rajgonds and maintained a state of 
superiority over the other Gonds, but with their decline in political power 
the Rajgonds returned to equal social status with the Gonds.

The Pardhans are a minority group in Andhra Pradesh and are only 
found in Adilabad District. They were traditionally hereditary bards to 
the Gonds and their mother ianguage is Marathi though they also use 
Gondi and Kolami.

The Koya are a large scheduled tribal population who inhabit forest as 
well as plains areas in Khamman District. They are settled agricultura
lists like the Telegu peasants of the region and, in addition, they parti
cipate in some hunting and gathering in the forest areas, and in teddy 
tapping.

The Konda Reddi are a people whose physical make-up shows strong 
Veddcid influences. They are expert basket makers who subsist on culti
vation as well as hunting and gathering.

Another tribal group who practice basket making are the Yerukula, 
whose language is a mixture of Tamil, Telegu and Kanarese. Whilst they 
are sometimes known by other names, such as Kaikadi in Telangana, 
their name Yerukula is derived from their profession of fortune-telling. 
The mythology of these people contains stories suggesting a relationship 
between the Yerukula and other tribes in Andhra such as the Chenchu and 
Yanadi.

The Sugalis, also called Lambadis, are a semi-nomadic tribe found 
in various states all over India, but particularly in the southern and 
western parts. They are of mixed origin and there are historical records 
which indicate their migration from the north, especially from Rajasthan 
and Gujarat, to southern India along with Moghul invaders for whom 
they acted as carriers of grain and other supplies.

In recent years some of the above six tribal groups have been studied 
for various genetic markers. Notable among such studies is that of Goud8 

which provided data on AjA2BO. Rh (D) blood group systems, ability 
to taste phenylthiocarbamide, colour blindness, Hp, Tf, Alb and Gm 
serum protein systems for the Rajgond, Pardnan, Naikpod and Koya
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tribes of Adilabad, Karimnagar, Warangal and Khamman Districts. 
Similar data were also provided for the Yerukula tribe of Warangal and 
Hyderabad Districts by Goud and Rao9. Rao20 presented data on the ABO 
blood group system in Konda Reddi, Koya and other tribal groups locat
ed in East Godavari District and \aidu and Veerraju12 reported ABO 
and Rh (D) blood groups from tribal populations in Visakhapatnam

ANDHRA PRADESH STATE INDIA

Fig. 1. Map of Andhra Pradesh showing the locations sampled, 
1—Sirpur R (20), P (2). 2—Asifabad R (30), P (29).
3—Utnur R (47), P (17). 4—Adilabad R (9), P (42).
5 — Boath R (30), P (9). 6—Badrachalam K (32).
7—Burgampad K (32). 8— Paloncha K (50).
9—Yellandu K (40). 10—V.R. Puram KR (3).

11— Kolluru KR (15). 12—Pocharam KR (26).
13— Koida KR (10). 14—Tekulloddi KR (13).
15— Jeedikuppa KR (13). 16— Katkuru KR (H).
17—Bheemavaram KR (1). 18 — Lingala Y (26).
19—Srisailam Y (14). 20—Achempet S (7).

' 21— Mahanandi S (41) 22—Pattikonda S (52).
R— Rajgond. P—Pardhan. K— Koya. KR— Konda
Reddi. Y—Yerukula. S—Sugali. Figures in brackets
refer to the number of blood samples collected.
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District; ABO blood group studies on the Bagatha and Valmiki from the 
same District were carried out by Rao and Reddy19. Ramachandraiah14 
provided data on ABO blood group system, colour blindness and other 
anthropometric traits for the Lambadi (Sugili) tribe in Andhra Pradesh. 
Santachiara-Benerecetti et al'2i 25 studied some of the red cell enzyme 
systems on Konda Reddis, Koya Doras and some non tribals located in 
West Godavari District, whilst Goud and Rao10 have provided data on 
serum protein systems for several tribal groups from Adilabad, Khamman 
and Warangal Districts. Two abnormal haemoglobins, Hb Rampa and Hb 
Koya Dora, have been reported in the Koya Dora5 6.

Data on a number of red cell enzyme systems for other tribal popu
lations in Andhra Pradesh, have been provided by Rao et al1' for the 
Savara and Jatapu, Ramesh et al15 for the Kolams and Ramesh et al18 
for the Chenchu.

Materials and Methods
A total of 582 blood specimens were collected from school children in 

the Adilabad, Khamman, Mahabubnagar and Kurnool Districts of 
Andhra Pradesh and the locations sampled are shown in Fig. 1. For 
enzyme typing the blood was taken on to 3MM chromatography paper 
following the methods of Saha and Kirk21 and Rao et aid' In some 
instances there was insufficient sample to test for all systems. For the 
blood grouping, samples were collected from fingerpricks into heparinised 
capillary tubes. No blood grouping was carried out for the Yerukula, 
and only the ABO and MN systems were studied for the Sugali. Where 
applicable the Rh gene frequencies were calculated using a maximum 
likelihood method.

Results and Discussion
The phenotype distribution for the ABO, MN and Rh systems are shown 

in Table I and the gene frequencies in Table II. The phenotype distribu
tions and gene frequencies for haemoglobin and the red cell enzymes are 
listed in Table III. No variation was detected in malate dehydrogenase, 
lactate dehydrogenase or superoxide dismutasefor any of the tribal groups 
reported in this paper.

Blood group systems
The resuits of the ABO and MN blood group systems for these six tribal 

populations show gene frequencies which are consistent with those for 
other tribal people from this region, though the value of 11.28% for Ax 
in the Konda Reddi tends to be rather low and the value cf 42.94% for
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N in the Pardhans tends to be high.
There is not a large amount of data available on the Rh system for 

populations in Andhra Pradesh with the exception of the Chenchu who 
have been studied extensively by Simmons et u/26 and Ramesh et a/16. 
The frequencies of Rx in the four populations reported in this paper are 
all rather higher than in the Chenchu with the R2 values being corres
pondingly lower. The values for r in the Pardhans, Koya and Konda 
Reddis, are all similar to that in both groups of Chenchu noted above, 
though the allele was not detected in the Rajgonds. The Chenchu report
ed by Simmons et a/2C showed a high frequency of r; in this report, only 
in the Koya w'as this allele present, at a frequency of 6-7%.

Haemoglobin
Haemoglobin S is found commonly in the tribal groups of south India 

and Andhra Pradesh; Rao et al17 have reported its presence in the Savara 
and Jaiapu, Ramesh et al15 for the Kolams, Rameh et al16 for the Chenchu 
and Rao and GoudIS for a number of other tribal groups. In the present 
study the Hbs allele, confirmed by citrate-agar electrophoresis, was present 
in all groups except the Ycrukula, the highest frequency being 18.3% in 
the Pardhans.

Red cell enzymes

Phosphoglucomutase, locus 1 :
Both the PGMl and PGM I alleles are present in all six tribal groups 

and the frequencies are within the range expected for southern Indian 
populations. However, of particular interest is the occurrence of the 
allele PGMl in the Yerukula where four examples of PGMX 7-1 and one 
example of PGM! 7-7 were observed to give a gene frequency of almost 
8% for PGMl, the highest vaiue so far recorded anywhere in the world 
for this allele; however, the sample size is small and the two groups 
tested are probably inbred isolates. A frequency of almost 6°/0 has been 
recorded for PGMl in Micronesians from the Western Carolines1. San- 
tachiara-Benerecetti et a!11 have detected two examples of the phenotype 
PGM* 7-1 in a non-tribal population from Andhra Pradesh and Ramesh 
et al16 have reported a single PGMj 7-1 in 139 Chenchu from Mahabub- 
nagar.

Phosphoglucomutase, locus 2 :
The occurrence of variation at the PGM3 locus has been reviewed by 

Blake and Omoto2 and in that report the widespread distribution in 
New Guinea of the allele PG M l0 was described; also, the occurrence of a
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single example of PGM2 10-1 was noted in an Australian Aborigine from 
Arnhem Land, ln India. Santachiara-Benerecetti et cd21 have reported 
PGM2, PGA/2 1ND and PGMl in non-tribals from Andhra Pradesh.

The occurrence of the phenotype PGM2 10-1 in a single Ycrukula 
individual is therefore of particular interest. The isozyme bunding 
patterns, after electrophoresis in starch gels, for PGM, 6IN1M and PGM2 
10-1 appear to be similar to each other, though the distribution of activity 
within the bands may be different as suggested by the Fig. 5 in Blake and 
Omoto2. However, whilst we have not been able to directly compare the 
New' Guinea PGM, 10-1 with PGM, 6IXD-1, we have compared the Yeru- 
kula PGM, 10-1 with the New Guinea variant, and believe them to be 
electrophcreticaliy indistinguishable.

Acid phosphatase :
The frequency of ACpf tends to be lower in south Indian populations 

than in those from the north; in the south, the range is from 3.5% for the 
Irulas23 up to 38.1% in the Mahabubnagar Chenchu16 and 46.7% in the 
Kota7. The frequencies for ACPi in the six tribal groups of this paper 
are comparable with those for other tribal populations in Andhra 
Pradesh15-17. Of interest, however, is the occurrence of a single ACPi 
AC phenotype in a Konda Reddi. The ACP\ allele occurs, sporadi
cally in Indian populations but seems to be even more uncommon in 
tribal populations. In south India, the only other report of ACPcj in 
tribal people is for the Kadar of Kerala2- where two examples of the 
phenotype ACPi BC were detected.

6-Phosphogluconate dehydrogenase :
Indian populations generally have low frequencies of the common 

variant allele PGDC, though the Kadar and the Malayarayans from Kerala 
have frequencies for this allele of 16.8% and 11.2% respectively22 23. In 
Andhra Pradesh the Savara and Jatapu from Srikakulum District were 
monomorphic for PGDA 17 w hilst the Kolams from Adilabad District15 and 
the Chenchu from Mahabubnagar and Kurnool Districts16 had frequencies 
for PGDC in the vicinity of 2%. The values for PGDC in the six tribal 
populations reported in this paper are therefore within the range for this 
allele in tribal populations in Andhra Pradesh in particular, but also for 
Indian populations in general.

Adenylate kinase
The frequency of the allele, AK", is generally of the order of 10-12% in 

Indian populations. In Andhra Pradesh, Santachiara-Benerecetti et aliS
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have reported AK2 frequencies of 6.6% for the Koya Dora and 7.4% for 
the Konda Rcddis. Rao et al17 have reported 12.1% for the Savara and 
3.2% for the Jatapu. Ramesh et al15 have reported 5.4% for Kolams and 
Ramesh et n/16 gave values of 8.3% and 5.7% for AK'1 in two Chenchu 
groups. It therefore seems that AK2 gene frequencies for tribal people, at 
least in Andhra Pradesh, tend to be rather lower than for Indian popu
lations in general. Thus, for the populations reported here, the frequenc
ies of AK2 are consistent with those for the other tribal groups mentioned 
above, though the value of 13.1% for the small sample of Sugali is rather 
high.

Phosphohexose Isomerase :
The literature now contains a number of references to the occurrence of 

PHI variants in Andhra tribal populations15-17; in the populations report
ed in this study, a single example of PHI 3-1 was detected in the Raj- 
gonds and six examples in the Koya.

Genetic distance
Using Morton’s11 hybridity coefficient (6) and Nei’s13 standard genetic 

distance measure (D), we have computed the matrices of genetic dis
tances, Table IV, among 11 major tribal populations from Andhra Pra
desh. The populations analysed are the six tribal groups in the present 
study, two Chenchu populations taken from Ramesh et a/16, the Kolams15 
and the Savara and Jatapu.17 The calculations are based on data from 
13 genetic (polymorphic) systems. These include ABO. MN, Rh, phos
phohexose isomerase (PHI), lactate dehydrogenase locus B (L D H e), 
adenylate kinase (AK), 6-phosphogluconate dehydrogenase (PGD), acid 
phosphatase-1 (ACP^, phosphoglucomutase locus-1 (PGMX), haemo
globin -ß (HB/3). haptoglobin (Hp), transferrin (Tf) and group specific com
ponent (Gc). The gaps in the data from our laboratory have been vari
ously filled from published sources. Systems for which information on 
individual populations are lacking in the literature, have been given the 
default gene frequencies, computed as weighted averages from data on 
other Andhra tribal groups.

The matrix of hybridity coefficients (9) has been reduced to construct a 
dendrogram (Fig. 2). The phenetic relationships demonstrated by this 
approach match well in parts, with the geographical proximity of the 
populations in question. For example, the two populations from the 
coastal district of Srikakulum, the Savara and Jatapu cluster together. 
Similarly, the Kolams, Koyas and Rajgonds from the Telangana 
districts of Khamman and Adilubad are grouped together. These two
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neighbouring groups of tribes also cluster with each other. The four 
populations from the southern districts, the Mahabubnagar and Kurnool 
Chcnchu, the Yerukulas and the Lambadi, however, do not show any 
such association and join the clusterings at random.

The two dimensional representation of the genetic distances, based on 
a plot between first two scaled eigenvectors (Fig. 3) gives a slightly 
different insight into the genetic relationships. The Pardhans show close
ness with other populations from the Telangana region. The populations 
of Mahabubnagar and Kurnool Districts, however, still show random 
dispersion. Additional evidence, although subjective, obtained by reduc
ing Nei’s distance matrix (Table IV), however, reveals closer relationship 
between the Yerukula and Lambadi.

The pattern of clustering seen among the tribal populations of Andhra 
Pradesh, although consistent with their geographical positioning in gene
ral (these patterns are also consistent with their migration histories) has 
certain aberrations. Historically, some tribal groups, such as the Lambadi 
and Pardhans, are believed to be of north Indian origin and have migrat
ed to these districts comparatively recently. The differences between the 
two Chenchu groups, on the other hand, have been accentuated by their 
small effective population sizes. Similarly, small sample size may be res
ponsible for the inconsistent behaviour of the Yerukula.

The genetic distances computed by using Nei’s method can be tested for 
their level of significance using standard errors. Two populations stand 
out in this regard : Chenchus (M) and Pardhans exhibit significant 
differences in genetic distances with each other as well as in 13 out of 18 
possible pair-wise combinations with others. Lambadis are also quite 
deviant in this regard. Among non-significant values, the contribution 
from Chenchus (K) is the largest; the group does not show significant 
distance from any of the populations under consideration.

Conclusions
The conclusions arrived at in this study with respect to the population 

structure and spatial heterogeneity in Andhra tribes are at variance with 
the results obtained by Chakraborty and Yee3 from phenotype bioassay of 
five tribes from the adjoining district of Koraput in Orissa. The mean 
amount of the kinship coefficient {<p) in Andhra tribes is 9.523 xHL-3 in 
comparison with 2.613 x 10~3 for Orissa tribes. Similarly, mean within 
population estimates of <f>n are much larger in Andhra tribes than in 
Orissa tribes (19.051 X 10'3 against 6.657x 10"3). These differences may be 
accounted for by the use of a different set of genetic markers with differ
ent spectra of allelic variability and also the basic difference in their mating
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Fig. 2. Phenetic relationships among 11 Andhra tribal 
populations based on Morton’s 6\j values.
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patterns. The latter difference is significant in view of the very high pro-
A

portion of consanguinity in Andhra tribes (F=0.020-0.4?);7, and the for
mation of relatively small sized inbred isolates, by virtue of their thin dis
persion, in Chenchus, Yerukulas, Lambadis and Pardhans. The Orissa 
populations on the other hand avoid consanguinity and show relatively 
continuous distributions.3 4

Another major difference with the analysis of Orissa tribes by Chakra- 
borty and Yee3 is the role of geographical proximity in influencing the 
mean value between populations of the hybridity coefficient, flq. The 
most distant populations exhibit maximum amount of hybrid ity coefficient 
in Andhra, while this difference is low in adjacent tribes or in tribes 
from the same area. The congruence of geographical placements with 
the topology derived from the thj matrix is an indicator of the role of 
isolation by distance. This is not to suggest, however, that initial fission
ing and settlement of these populations does not affect this hierarchial 
classification. These results suggest a diametrically opposite situation in 
Andhra tribes from Orissa tribes.

The divergent placement of the two Chenchu groups on the dendro
gram (Fig. 2) and the two dimensional representation (Fig. 3), however, 
is unexpected. Loci contributing heavily to the high values of 0 between 
these two groups are the phosphohexose isomerase (PHI) and the lactate 
dehydrogenase locus (LDHb), both of which are polymorphic in the Chen
chus from Mahabubnagar but show no variation in the Chenchus from 
Kurnool16. A new matrix of estimates of 6ij, calculated after excluding 
these two loci, not only brings the two Chenchu groups close together, 
but also demonstrates their close affinity with other autochthonous tribes 
of Andhra Pradesh. It demonstrates also the importance for genetic dis
tance estimates of random drift effects on the frequency of alleles in small 
groups as exemplified here by the two Chenchu samples.
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